
DCM 1 Draft: 5/17/2009 

Direction Cosine Matrix IMU: Theory 
William Premerlani and Paul Bizard 

 
This is the first of a pair of papers on the theory and implementation of a 

direction-cosine-matrix (DCM) based inertial measurement unit for application 
in model planes and helicopters. Actually, at this point, it is still a draft, there 
is still a lot more work to be done. Several reviewers, especially Louis 
LeGrand and UFO-man, have made good suggestions on additions and 
revisions that we should make and prepared some figures that we have not 
included yet. We will eventually incorporate their suggestions, but it may take 
a long time to get there. In the meantime, we think there is an audience who 
can benefit from what we have so far. 

The motivation for DCM was to take the next step in stabilization and 
control functions from an inherently stable aircraft with elevator and rudder 
control, to an aerobatic aircraft with ailerons and elevator. One of the authors 
(Premerlani) built a two axes board several years ago, and developed 
rudimentary firmware to provide stabilization and return-to-launch (RTL) 
functions for a Gentle Lady sailplane. The firmware worked well enough, and 
the author came to rely on the RTL feature, but it never seemed to work as 
well as the author would like. In particular, satisfactory solutions to the 
following two issues were never found: 

• Mixing. It was recognized that in a banked turn, there were two 
problems arising from the bank angle. First, the yaw rotation of the 
aircraft around the turn generated a nuisance signal in the pitch gyro, 
because of the banking. Second, in order to make a level turn, the 
elevator needed some “up” deflection. The amount of deflection 
depends on the bank angle, which could not be directly measured. 
Both issues were opposite sides of the same coin. 

• Acceleration. An accelerometer measures gravity minus 
acceleration. The acceleration is equal to the total of all of the 
aerodynamic forces (lift, thrust, drag, etc.) on the plane, plus the 
gravity force, divided by the mass. Therefore, the accelerometer 
measures the negative of the total of all of the aerodynamic forces. 
The measurement of gravity is what is needed to level the plane but 
that is not what you get out of an accelerometer during accelerated 
motion. Acceleration is a confounding variable. In particular, when 
the aircraft pitches up or down, for a short while it accelerates in 
such a way that the output of an accelerometer does not change. 
There is a similar effect that the NASA astronauts experience when 
they are in training planes. A ballistic path can produce zero net 
forces and therefore fool accelerometers temporarily. The 
combination of this issue and the previous one prevented really tight 
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pitch control, and this issue prevented the use of pitch stabilization 
during a hand launch. 

It was realized that part of the problem was not having a six degree of 
freedom inertial measurement unit (IMU), so it was decided to design a new 
board. The UAV DevBoard from SparkFun was the result. 

Coincidentally, one of us (Premerlani) decided he wanted to step up to an 
aircraft with ailerons, and found that he just did not have the needed flying 
skills. He crashed 5 times in one summer, and had to completely replace his 
plane 3 times. So, he decided to use his new board for stabilization, shown 
below, attached to his Goldberg Endurance with Velcro. 

 
The question was, how best to do that? Working together, we came to the 

same conclusion of Mahoney [1]. What is needed is a method that “fully 
respects the nonlinearity of the rotation group.” Paul and I decided that we 
should represent the rotation with a direction cosine matrix, that we could 
maintain the elements of the matrix using gyro, accelerometer, and GPS 
information, and that we could use the matrix for control and navigation. At a 
high level, here is how DCM works:  

1. The gyros are used as the primary source of orientation information. 
We integrate the nonlinear differential kinematic equation that relates 
the time rate of change in the orientation of the aircraft to its rotation 
rate, and its present orientation. This is done at a high rate, (40 to 50 
Hz) often enough to give the servos fresh information for each and 
every PWM pulse that is sent to the servos. 
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2. Recognizing that numerical errors in the integration will gradually 
violate the orthogonality constraints that the DCM must satisfy, we 
make regular, small adjustments to the elements of the matrix to 
satisfy the constraints. 

3. Recognizing that numerical errors, gyro drift, and gyro offset will 
gradually accumulate errors in the DCM elements, we use reference 
vectors to detect the errors, and a proportional plus integral (PI) 
negative feedback controller between the detected errors and the gyro 
inputs used in step 1, to dissipate the errors faster than they can build 
up. GPS is used to detect yaw error, accelerometers are used to detect 
pitch and roll. 

The process is shown schematically in Figure 1. 
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Figure 1 Block diagram of DCM 

No doubt you are wondering what a rotation group is, and why it should be 
respected. You also might be wondering how you can use DCM for control 
and navigation. You also might have the same questions that UFO-MAN 
asked on the subject after he read Mahoney’s paper, so we will start with 
those questions: 

• What is a quaternion and why do we use that instead of vector 
notation? 

• What is meant by a rotation group? 

• What is a rotation matrix? 

• What does it mean to maintain orthogonality of the rotation matrix? 

• What is an anti symmetric matrix? 

• Can you briefly explain kinematics in this rotation matrix context? 

• Can you briefly explain dynamics in this rotation matrix context? 
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All of this is concerned with rotations. Physically, what we are trying to do is 
represent the orientation of our aircraft with respect to the earth as a rotation. 
There are several ways to do this. Mahony's paper discusses two alternate 
ways, rotation matrices and quaternions. Both approaches are similar in 
motivation, they are representing rotations without approximations and 
without singularities. Quaternions have the advantage of requiring only 4 
values, while rotation matrices have 9. Rotation matrices have the advantage 
of being a natural fit to control and navigation. We chose rotation matrices as 
having a slight advantage, and for being more familiar to us. 
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A rotation matrix describes the orientation of one coordinate system with 

respect to another. The columns of the matrix are the unit vectors in one 
system as seen in the other system. A vector in one system can be 
transformed into the other system by multiplying it by the rotation matrix. The 
transformation in the reverse direction is accomplished with the inverse of the 
rotation matrix, which turns out to be equal to its transpose. (The transpose is 
just the swap of rows and columns.) Unit vectors are useful in the control and 
navigation computations, because their length is one. Therefore they can be 
used in dot and cross products to obtain the sine or cosine of various angles.  
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As your plane flies along, it is possible to describe its motion with a 
translation (movement of its center of gravity) and a rotation (change in 
orientation around its center of gravity). Its orientation with respect to the 
earth can be described by specifying a rotation about an axis. By starting with 
the plane level and pointing in a standard direction and applying the rotation, 
you will place the plane in its actual orientation. Any orientation can be 
described as a rotation from the “standard” position. 

A rotation group is the group of all possible rotations. It is called a group 
because any two rotations in the group can be composed to produce another 
rotation in the group, every rotation has an inverse rotation, and there is an 
identity rotation. That is the definition. However, the way that we like to think 
about it as being a group is that you can wind up going around a complete 
circle and arriving back where you started. The rotation group is closed.  

The reason that the rotation group should be respected is that by doing 
that, you make the fewest approximations and are able to perform control and 
navigation with the plane in any orientation, including upside down and 
pointing vertical. You can do aerobatics without making any approximations. 

The basic idea is that the rotation matrix that defines the orientation of your 
aircraft can be maintained by integrating the nonlinear differential equation 
that describes the kinematics of the rotation. (We will present the nonlinear 
differential equation shortly, and explain why it is nonlinear.) Kinematics is 
concerned with the geometry of the rotation of a rigid body, and how the 
rotation transforms one rigid configuration into another configuration. This is 
done by recognizing that the integration can be accomplished via a series of 
matrix compositions.  

By matrix composition we simply mean multiplying two rotation matrices 
together. It can be shown that the resulting matrix represents the net rotation 
that results from applying the two rotations in sequence that each of the 
matrices represents. 

However, numerical integration introduces numerical errors, and does not 
produce the same result that symbolic integration. An exact symbolic 
integration of the exact gyro signals will produce the exactly correct rotation 
matrix. Numerical integration, even if we had the exact gyro signals, will 
introduce two sorts of numerical errors: 

• Integration error. Numerical integration uses a finite time step and 
data that is sampled at a finite sampling rate. Depending on the 
method that you use to do the integration, you are making certain 
assumptions about what is happening between data samples. The 
method that we use in our implementation assumes that the rotation 
rate is constant over the time step. This introduces an error that is 
proportional to the rotational acceleration. 

• Quantization error. No matter what representation you use for the 
values, the digital representation is finite, so there is a quantization 
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error, starting at the analog to digital converter, and building 
whenever you perform a calculation that does not preserve all of the 
bits of the result. 

One of the key properties of the rotation matrix is its orthogonality, which 
means that if two vectors are perpendicular in one frame of reference, they 
are perpendicular in every frame of reference. Also, that the length of a vector 
is the same in every frame of reference. Numerical errors can violate this 
property. For example, since the rows and columns are supposed to 
represent unit vectors, their magnitude should be equal to one, but numerical 
errors could cause them to get smaller or larger. Eventually they could shrink 
to zero, or go to infinity. The rows and columns are supposed to be 
perpendicular to each other, numerical errors could cause them to "lean" into 
each other, as shown below: 

 

  
The rotation matrix has 9 elements. Actually, only 3 of them are 

independent. The orthogonality property of the rotation matrix in mathematical 
terms means that any pair of columns (or rows) of the matrix are 
perpendicular, and that the sum of the squares of the elements in each 
column (or row) is equal to 1. So, there are 6 constraints on the 9 elements.  
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An antisymmetric matrix is a matrix in which each element in the matrix is 

equal to the negative of the element with swapped row and column index. So, 
for example, if the element in the first row, third column is 0.5, then the 



DCM 7 Draft: 5/17/2009 

element in the third row, first column must be -0.5. Also, the elements on the 
diagonal of an antisymmetric matrix must be zero. 

It turns out that a small rotation can be described with an antisymmetric 
matrix as shown below: 
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In our case, kinematics is concerned with the implications of rigid body 

rotation. It results in a nonlinear differential equation that describes the time 
evolution of the orientation of the body in terms of its vector rotation rate. The 
direction cosine matrix is all about kinematics. 

Dynamics in our case is the application of Newton's laws to describe the 
time rate of change of the rotation rate vector in terms of the applied torques.  

By the way, the dynamics in Mahony's paper are NOT accurate for planes, 
they were concerned mainly with helis and vertical take-offs. Mahony's paper 
describes how to implement a combined orientation measurement and control 
algorithm. What Paul and I are doing involves kinematics only. We have 
completely ignored dynamics for now. The kinematics (rotation matrix) by 
itself is very useful for providing a basis for control and navigation of model 
airplanes. 

You are probably still wondering how to use DCM. Control and navigation 
can be accomplished with DCM entirely in Cartesian coordinates using vector 
cross products and dot products. For example, at a high level, here is how 
you accomplish these four control and navigation calculations. 

1. To control the pitch of an aircraft, you need to know the pitch attitude of 
the aircraft, which you can find by taking the dot product of the roll axis 
of the aircraft with the ground vertical. 

2. To control the roll of an aircraft, you need to know the bank attitude of 
the aircraft, which you can find by taking the dot product of the pitch 
axis of the aircraft with the ground vertical.  

3. To navigate, you need to know the yaw attitude of the aircraft with 
respect to the direction that you want to go, which you can find by 
taking the cross product of the roll axis of the aircraft with a vector in 
the direction that you want to go. This works even if you are upside 
down. To find out if your aircraft might be pointing in the opposite 
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direction than you want to go, take the dot product of the roll axis with 
the desired direction vector. If it is negative, the aircraft is more than 90 
degrees off course.  

4. To find out if the aircraft is upside down, examine the sign of the dot 
product of the aircraft yaw axis with the vertical. If it is less than zero, 
the aircraft is upside down. 

5. To find out the turning rate of the aircraft around the vertical earth axis, 
transform the gyro rotation vector to the earth frame of reference, and 
take the dot product with the vertical axis. 

We now get deeper into the details of the theory. 

Axis conventions 
To describe the motion of an airplane it is necessary to define a suitable 

coordinate system. For most problems dealing with aircraft motion, two 
coordinate systems are used. One coordinate system is fixed to the earth and 
may be considered for the purpose of aircraft motion analysis to be an inertial 
coordinate system. The other coordinate system is fixed to the airplane and is 
referred to as a body coordinate system. Figure 2 shows the two right-handed 
coordinate systems. 
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Figure 2 Body fixed frame and earth fixed frame 

 
The orientation of the airplane is often described by three consecutive 

rotations, whose order is important. The angular rotations are called the Euler 
angles. The orientation of the body frame with respect to the fixed earth frame 
can be determined in the following manner. Imagine the airplane to be 
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positioned so that the body axis system is parallel to the fixed frame and then 
apply the following rotations: 

1. Rotate the body about its zb axis through the yaw angle ψ 

2. Rotate the body about its yb axis through the pitch angle θ  

3. Rotate the body about its xb axis through the roll angle φ  

yb 

xb 

zb 

Figure 3 Body axes coordinate system 

Direction cosine matrices 
Certain types of vectors, such as directions, velocities, accelerations, and 

translations, (movements) can be transformed between rotated reference 
frames with a 3X3 matrix. We are interested in the plane frame of reference 
and the ground frame of reference. It is possible to rotate vectors by 
multiplying them by a matrix of direction cosines: 
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The relation between the direction cosine matrix and Euler angles is: 
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  Eqn. 2 

Equation 1 and equation 2 expresse how to rotate a vector measured in the 
frame of reference of the plane to the frame of reference of the ground. 
Equation 1 is expressed in terms of direction cosines. Equation 2 is 
expressed in terms of Euler angles. 

In equation 1, each component of the vector in the ground frame is equal to 
the dot product of the corresponding row of the rotation matrix with the vector 
in the plane frame. Nine multiplies and six additions are required to compute 
the rotation. Equation 3 is a restatement of equation 1, with the matrix 
multiplication expanded in terms of the elements of the vectors and the 
matrix. 
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 Eqn. 3 

Note that the R matrix is not necessarily symmetric. The three columns of 
the R matrix are the transformations of the three axis vectors of the plane to 
the ground frame of reference. The three rows of the R matrix are the 
transformations of the three axis vectors of the ground coordinate system to 
the plane frame of reference. The R matrix contains all the information 
needed to express the orientation of the plane with respect to the ground. The 
R matrix is also called the direction cosine matrix, because each entry is the 
cosine of the angle between an axis of the plane and an axis on the ground. 
Although it would appear that there are 9 independent parameters in the R 
matrix, there are really only 3 independent ones, because of the six so-called 
orthogonality (also known as normalization) conditions: the three column 
vectors are mutually perpendicular and the magnitude of each column vector 
is equal to one.  

The transpose of any matrix, and the rotation matrix in particular, indicated 
as TR , is formed by interchanging rows and columns. In general, the inverse 
of a square matrix, if it exists, is indicated as 1R− . The inverse of a matrix 
times the matrix produces the identity matrix. (The identity matrix has all ones 
on the diagonal, and all zeros everywhere else. Multiplying any matrix by the 
identity matrix leaves it unchanged.  In the case of rotation matrices, it turns 
out that the transpose of the R matrix is equal to its inverse: 
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The reason that the inverse of the rotation matrix is equal to its transpose is 
because of the symmetry of the situation. The elements of the rotation matrix 
are the cosines between pairs of axis, one in the plane frame, and one in the 
ground frame. The inverse situation is equivalent to exchanging the roles of 
the ground and plane frame of reference, which is the same as interchanging 
rows and columns, which is the same as the transpose. 

Also, the fact that the inverse is equal to the transpose is consistent with the 
orthogonality conditions, which can be expressed in matrix notation as: 
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Equation 5 can be used to prove that the inverse of R is R transpose, by 
multiplying the equation by the inverse of R, or by the inverse of R transpose. 

A very useful property of the rotation matrix is that we can compose 
rotations. We can multiply several rotations matrices together, and get a 
rotation matrix that is equivalent to applying all of the rotations in succession. 
We have to be careful to apply the rotations in succession on the left side of 
what we already have. For example, if we have three rotation matrices, from 
orientation A to orientation B, from B to C, and from C to D, we can compute 
the rotation matrix that will go from orientation A to orientation D according to: 
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The reason that we have to be careful about the sequence of operations 
when multiplying rotations matrices is that matrix multiplication is NOT 
commutative. That is, the order of matrix multiplication matters very much.. 
This is consistent with rotations, which are not commutative either. For 
example, consider what happens if a plane pitches around its own pitch and 
roll axes by 90 degrees each. The order very much matters. Suppose that is 
pitches up by 90 degrees, followed by a roll of 90 degrees. At that point the 
plane will be traveling vertically. However, if it rolls first, and then banks, it will 
be traveling in the horizontal plane.  
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Finally, there is a useful identity that applies to matrices in general, and to 
rotation matrices in particular. The transpose of the product of two matrices is 
equal to the product of the transposes of the matrices, with the two matrices 
swapped: 

 ( )
matrices are BA,
ABAB TTT =  Eqn. 7 

Vector dot and cross products 
Two very useful vector products that we will use in computing DCM and in 

using its elements for navigation and control are the dot product and the cross 
product. The dot product of two vectors A and B, is a scalar computed by 
performing a matrix multiplication of a A as a row vector with B as a column 
vector producing: 
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It turns out that the vector dot product produces a result that is equal to the 
product of the magnitudes of the two vectors, times the cosine of the angle 
between them: 

 ( )ABθcos⋅=⋅ BABA  Eqn. 9 

We note that the dot product is commutative: ABBA ⋅=⋅  
The cross product of two vectors A and B, is a vector whose components 

are computed by: 
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The cross product is perpendicular to both of its vector factors and its 
magnitude is proportional to the magnitudes of the vectors times the sine of 
the angle between them: 
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Stated another way: 
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We note that the cross product is anti-commutative. ABBA ×−=×  

Computing direction cosines from gyro signals 
With the preliminaries out of the way, we now move on to the central 

concept of the DCM algorithm: the nonlinear differential equation that relates 
the time rate of change of the direction cosines to the gyro signals. Our goal 
is to compute the direction cosines without making any approximations that 
violate the nonlinearity of the equations. For the moment, we assume that the 
gyro signals have no errors. Later on we will address the issue of gyro drift. 

Unlike rotating mechanical gyros, which stay fixed in space while the 
aircraft rotates around them, electronic rate gyros rotate with the aircraft, 
producing signals proportional to the rotation rate. Since rotations do not 
commute, and the sequence of rotations matter, we cannot get by with simply 
integrating the gyro rate signals to get angles, that will not work. What we 
have to do is look to the kinematics of rotations to see what we need to do to 
get the correct answer. 

A well known result of kinematics is that the rate of change of a rotating 
vector due to its rotation is given by: 
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We make the following observations: 
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1. The differential equation is nonlinear. The rotation vector input is 
(cross) multiplied by the variable that we are trying to integrate. 
Therefore, any linear approach will be only an approximation. 

2. Both vectors must be measured in the same reference frame. 
3. Because the cross product is anticommutative, we could reverse the 

order and change the sign. 
If we know the initial conditions and the time history of the rotation vector, 

we can numerically integrate equation 11 to track the rotating vector: 
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Our strategy is going to be to apply equation 13 to the rows or the columns 
of the R matrix, treating them as rotating vectors. 

The first snag that we run into is that the vectors that we want to track, and 
the rotation vector, are not measured in the same reference frame.  Ideally, 
we would like to track the axes of the aircraft in the earth frame of reference, 
but the gyro measurements are made in the aircraft frame of reference. There 
is an easy solution to the issue by recognizing the symmetry in the rotation. In 
the frame of reference of the plane, the earth frame is rotating equal and 
opposite to the rotation of the plane in the earth frame. So we can track the 
earth axes as seen in the plane frame by flipping the sign of the gyro signals. 
As a matter of convenience, we can flip the sign back, and interchange the 
factors in the cross product: 
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The vectors in equation 14 are the rows of the R matrix in equation 1. The 
next question is how to conveniently implement equation 14. We take the 
same matrix approach that Mahoney [1] uses. We start by going back to the 
differential form of equation 14: 
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There is one more thing that we need to do, in anticipation of the drift 
cancellation that we will be doing later on. We need to add the correction 
rotation rate that comes out of the proportional plus integral drift 
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compensation feedback controller to the measurement that the gyros make, 
to produce our best estimate of the true rotation rate: 
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Later on we will explain the details of computing the gyro correction vector. 
Basically, the GPS and accelerometer reference vectors that we have are 
used to compute a rotational error, which is fed into the computation through 
the feedback controller, and back into the rotation update equation via 
equation Eqn. 16. 

When we repeat equation 14 for each of the earth axes, we can put the 
result into a convenient matrix form: 
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Equation 17 is a recipe for updating the direction cosine matrix from gyro 
signals. It is equivalent to Manhoney’s result. The values of 1 on the diagonal 
of the matrix in equation 17 represent the first term in equation 15. The 
smaller, off-diagonal elements represent the second term in equation 15. 
Equation 17 is implemented numerically by repeated matrix multiplications, 
with short time steps. Each matrix multiplication requires 27 multiplications 
and 18 additions. It maps well to the dsPIC30F4011, which has hardware 
resources to perform matrix multiplication efficiently. It can be performed on 
CPUs that do not have matrix support, in which case it is recommended to 
use integer arithmetic. 

The only approximation that equation 17 makes is that the time step is short 
enough so that the R matrix does not change much from step to step. A 
typical time step is around 0.020 seconds, during which an aircraft rotating at 
around 60 degrees per second rotates approximately 0.020 radians, which 
translates to a maximum change in any of the R matrix coefficients of around 
2%. Thus, the second order terms that are being ignored are on the order of 
0.02%. 

Tests and simulations have shown that implementation of equation 15 by 
itself, with gyros with modest performance, yields very accurate results that 
achieve very low drift, on the order of a few degrees per minute. The drift is 
so low that it is a simple matter to adjust for it without compromising 
performance. However, by itself, equation 15 will eventually accumulate 
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numerical round-off and gyro drift, offset, and gain errors. In the next two 
sections we will explain how to cancel the errors. 

Renormalization 
Numerical errors will gradually reduce the orthogonality conditions 

expressed by equation 5 to approximations rather than identities. In effect, the 
axes in the two frames of reference no longer describe a rigid body. 
Fortunately, numerical error accumulates very slowly, so it is a simple matter 
to stay ahead of it. 

We call the process of enforcing the orthogonality conditions 
“renormalization”. We devised several ways that it could be done. Simulations 
showed they all worked quite well, so in the end, we settled on the simplest 
approach. It works as follows. 

First we compute the dot product of the X and Y rows of the matrix, which is 
supposed to be zero, so the result is a measure of how much the X and Y 
rows are rotating toward each other: 
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 Eqn. 18 

We apportion half of the error each to the X and Y rows, and approximately 
rotate the X and Y rows in the opposite direction by cross coupling: 
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 Eqn. 19 

You can verify that the orthogonality error is greatly reduced by substituting 
equation 19 into 18, keeping in mind that the magnitude of each row and 
column of the R matrix is approximately equal to one. Apportioning the error 
equally to each vector yields a lower residual error after the correction than if 
the error were assigned entirely to one of the vectors. 

The next step is to adjust the Z row of the matrix to be orthogonal to the X 
and Y row. The way we do that is to simply set the Z row to be the cross 
product of the X and Y rows: 
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The last step in the renormalization process is to scale the rows of the R 
matrix to assure that each has a magnitude equal to one. One way we could 
do that is to divide each element of each row by the square root of the sums 
of the squares of the elements in that row. However, there is an easier way to 
do that, by recognizing that the magnitudes will never be much different than 
one, so we can use a Taylor’s expansion. The resulting magnitude 
adjustment equations for the row vectors are: 

 

( )

( )

( ) orthogonalorthogonalorthogonalnormalized

orthogonalorthogonalorthogonalnormalized

orthogonalorthogonalorthogonalnormalized

ZZZZ

YYYY

XXXX

⋅−=

⋅−=

⋅−=

3
2
1

3
2
1

3
2
1

 Eqn. 21 

What equation 21 says to do to adjust the magnitude of each row vector to 
one, is to subtract the dot product of the vector with itself (the square of the 
magnitude), subtract from three, multiply by ½, and multiply each element of 
the vector by the result. 

There are not that many multiplies and additions in the normalization 
process. There are no divisions or square roots. We perform the calculation 
for each step of the integration, every 0.020 seconds. 

Drift cancellation 
Although the gyros perform rather well, with an uncorrected offset on the 

order of a few degrees per second, eventually we have to do something about 
their drift. What is done is to use other orientation references to detect the 
gyro offsets and provide a negative feedback loop back to the gyros to 
compensate for the errors in a classical detection and feedback loop, as 
shown if Figure 1. The steps are: 

1. Use orientation reference vectors to detect orientation error by 
computing a rotation vector that will bring the measured and computed 
values of reference vectors into alignment. 

2. Feed the rotation error vector back through a proportional plus integral 
(PI) feedback controller to produce a rotation rate adjustment for the 
gyros. (A PI regulator is a special case of a commonly used feedback 
regulator called a PID regulator. The D stands for derivative. In our 
case, we do not need the derivative term.) 

3. Add (or subtract, depending on your sign convention for the rotation 
error) the output of the PI controller to the actual gyro signals. 
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The main requirement for an orientation reference vector is that it does not 
drift. Its transient performance is not that important because it is the gyros 
that provide the transient fidelity for the orientation estimate. 

Our two reference vectors are supplied by GPS and accelerometers. 
Magnetometers are also useful, particularly for yaw control of hovering 
applications, but for aircraft that fly generally in the direction that they are 
pointed, a GPS will do just fine. If you use a magnetometer, to provide a 
vector reference you should use a three axis magnetometer. Low cost three 
axis magnetometers are commercially available. 

We use accelerometers to provide a reference vector for the Z axis of the 
airplane. Details will be given in a separate section. We use the GPS as a 
reference for the horizontal projection of the X axis (roll axis) of the plane. Our 
two reference vectors happen to be perpendicular to each other. That is 
convenient, but not absolutely necessary. 

For either of the two reference vectors, the orientation error is detected by 
taking the cross product of the measured vector with the vector that is 
estimated by the direction cosine matrix. The cross product is particularly 
appropriate for two reasons. Its magnitude is proportional to the sine of the 
angle between the two vectors, and its direction is perpendicular to both of 
them. So it represents an axis of rotation, and an amount of rotation, that 
would be needed to rotate the measured vector to become parallel to the 
estimated vector. In other words, it is equal to the negative of the orientation 
rotational error. By feeding it back to the gyros through the PI controller, the 
estimated orientation is gradually forced to track the reference vectors, and 
gyro drift is cancelled. 

The cross product of a measured reference vector with a corresponding 
vector computed from the direction cosine matrix is an indication of the error. 
It is approximately equal to the rotation that would have to be applied to the 
reference vector to bring it into alignment with the computed vector. We are 
interested in the amount of rotation correction that we need to apply to the 
direction cosine matrix, which is equal to the negative of the error rotation. So, 
it is convenient to compute the correction by interchanging the order in the 
cross product. The correctional rotation is equal to the cross product of the 
vector estimated by the direction cosines with the reference vector. 

We use a proportional plus integral feedback controller to apply the rotation 
correction to the gyros, because it is stable and because the integral term 
completely cancels gyro offset, including thermal drift, with zero residual 
orientation error. 

The way that the reference vector errors map back onto the gyros is done 
via the direction cosine matrix, so that the mapping depends on the 
orientation of the IMU. For example, the GPS reference vector might correct 
either the X, Y, Z, or combinations of X, Y and Z axis gyro signals, depending 
on the orientation of the axes with respect to the earth frame.  
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We will now get into more detail for the two references that we are using. 

GPS 
GPS provides a drift-free reference vector for the yaw orientation of the 

plane. The only reason that we do not use GPS by itself for yaw information is 
that the transient response of the gyros is much faster than that of the GPS. 
Instead, we use GPS as a reference vector to cancel gyro drift and achieve a 
yaw “lock”. 

Two of the major services provided by a GPS radio are reporting of location 
and velocity magnitude and direction. The GPS determines its location and 
velocity from the signals that it receives from orbiting satellites, and sends the 
information out through its serial interface. For most GPS receivers, there are 
two data formats, NMEA and binary. NMEA is a comma delimited, human 
readable standardized ASCII format. In the binary interface, binary values are 
transmitted as sequences of the ones and zeros of their internal binary 
representation. The binary interface provides some additional information that 
is not available in the NMEA interface. 

The GPS must move in order to give direction information. Otherwise, there 
is no way to determine the orientation of the GPS antenna. The velocity 
vector reported by GPS is the change in position of the antenna in 1 second. 
There are several ways a GPS might do the computation, but for all methods, 
the GPS must move. 

There are two different coordinate systems for GPS units to report location 
and velocity. One system reports longitude, latitude, altitude, velocity over 
ground, and course over ground. Course over ground is the angle of the 
course measured clockwise from the north. Interestingly enough, this is the 
same angle as measured in the mathematical sense (counter clockwise) 
around the Z axis in the body reference frame of the plane, with the Z axis 
pointing down. In this system, vertical velocity is available through the binary 
interface. 

The other system, ECEF (earth-centered, earth-fixed), reports X, Y, Z 
position and velocity, with the origin of the right-handed X, Y, Z coordinate 
system at the center of the earth. 

A GPS delivers its information as a continuous sequence of reports, 
typically once every second (1 Hz), though there is a trend toward higher 
reporting rates, with 5 times a second (5 Hz) becoming more common. 
However, a higher reporting rate does not necessarily lead to better 
performance, because of the limitations imposed by the dynamics of the GPS 
internal signal processing. 

There are several factors that should be kept in mind in considering GPS 
dynamics: 
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1. Reporting latency. Under certain circumstances, for some GPS units it 
may take as long as 12 seconds for the computed data to be 
transmitted. 

2. Filtering. All GPS units perform some sort of filtering to improve the 
accuracy of position and velocity estimation. This will result in a 
smoothing effect on the data when the GPS changes its velocity or 
position, so that the new information is not seen instantly, but rather 
becomes apparent gradually. 

3. Track smoothing and static navigation. Many types of GPS radios 
provide a “track smoothing” option to ignore sudden changes in 
position or velocity. This is useful for automotive applications to 
prevent changes from being seen as the result in changes in the 
satellite signals, such as when collection of satellites that are being 
used changes. They also provide a “static navigation” option so that 
variation in the apparent location is suppressed when the velocity falls 
below a certain value. This is also useful for automotive applications. 

It is not likely that you will every run into track smoothing or static 
navigation, because the factory defaults are to turn these options off, but you 
should be aware of them. However, reporting latency and filtering must be 
taken into account. 

By reporting latency we mean a simple time delay between when the GPS 
measures position and velocity, and when it appears in the sequence of 
messages. Usually this delay is the reporting time period. For example, if your 
GPS is reporting at 5 Hz, the reporting latency is typically 0.2 seconds. 
However, it could be much larger than that if you are not careful. One of us 
(Bill) had the bad luck of stumbling into a 12 second latency with a reporting 
rate of 1 Hz. It turned out that the 12 second delay was triggered by using a 
combination of 4800 baud and the binary interface. It was reduced to a 1 
second latency by changing the baud rate to 19,200. Chances are that you 
will not run into this effect, but be aware that it exists. If you use the binary 
interface, you should use a baud rate of 19,200 or greater. 

In addition to a simple latency, you will generally also run into a delay 
caused by internal filtering done by the GPS. All GPS units perform some sort 
of filtering of the data by the very nature of how they do their computations. 
There is an inherent compromise in any system between accuracy and 
transient response. The more accurate you want to know something, the 
longer it will take to estimate it. In most units, the filtering shows up as a 
smoothing of the data. Typically, the dynamic response of many types of GPS 
is a simple exponential response with a 1 second time constant, so that it 
takes about 3 seconds to fully respond to a step change. If you ignore the 
GPS dynamics, there will be a small error introduced into your navigation 
calculations during a turn. One of us (Paul) saw that it is possible to 
compensate for this small error by introducing a filter between the direction 
cosine matrix and the input to the yaw drift correction. [Do we need a figure?]. 
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That way, the dynamics of the two vectors used in the estimation of the yaw 
error are matched.  

It is often assumed that a GPS with a high reporting rate, such as 5 Hz, will 
provide better dynamic performance that on with the most common reporting 
rate, 1 Hz. However it is not necessarily the case that the higher reporting 
rate will provide better dynamic response. Certainly, its latency will be less. 
However, there is still the issue of the filter dynamics, which will generally turn 
out to be the limiting effect. 

The GPS horizontal course over ground signal has zero drift over the long 
term, and can be used as a reference vector to achieve “yaw lock” for the 
IMU. We considered also including the vertical velocity from the GPS, but 
decided against it, in favor using the accelerometers for vertical information. 

The assumption is made that the aircraft is moving in the direction that it is 
pointing. Any transient errors in that assumption do not materially affect 
performance. However, strong winds, particularly cross winds, do violate this 
assumption. There are two approaches that you can take. One approach is to 
somehow compute the wind vector from available information. We are 
continuing to work on that. The other approach is to use moderate feedback 
gains. The difference between the direction the aircraft is pointing and the 
direction that it is moving will show up as an error at the input to the drift 
correction feedback controller. The result will be that DCM will adapt to the 
wind, and rotate the plane the amount required to keep it moving along the 
desired course over ground. 

The following figure shows how the yaw correction is computed: 
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The rotational error between the GPS course over ground vector, and the 

projection on the horizontal plane of the roll axis (X) of the IMU is an 
indication of the amount of drift. The rotational correction is the Z component 
of the cross product of the X column of the R matrix and the course over 
ground vector. 

First, we form the reference vector from the normalized horizontal velocity 
vector. This can be done by simply taking the cosine and sine of the course 
over ground angle, in the earth frame of reference: 
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We then compute yaw correction: 

 COGXrCOGYrionGroundYawCorrect yxxx −=  Eqn. 23 

However, equation 23 yields the yaw correction in the earth frame of 
reference. In order to adjust the gyro drift, we will need to know the correction 
vector in the aircraft (body) frame of reference. To compute that we must 
multiply the yaw correction in the ground frame of reference by the Z row of 
the R matrix: 

 















=

zz

zy

zx

r
r
r

ionGroundYawCorrectionPlaneYawCorrect  Eqn. 24 



DCM 23 Draft: 5/17/2009 

The yaw correction vector produced by equation 24 will be combined with 
roll-pitch correction computed from the accelerometers into a total vector that 
is used to compensate for drift. Details of that computation will be given after 
we discuss how the accelerometers are used. 

There are three conditions relative to yaw drift compensation that argue for 
a large weighting of the yaw correction, to enable a rapid response to yaw 
error. 

The first condition is initial yaw lock. When the algorithm starts up, it has no 
way of knowing what direction the board is pointing. Even if it did, during the 
time it waits for GPS lock, it will be drifting, and even after GPS is locked, the 
GPS reported course over ground will be random numbers before the plane is 
launched. By giving the yaw drift correction a large weight, yaw lock can be 
achieved shortly after takeoff. 

The second condition is winds. If the plane travels for a long time in a cross 
wind, the wind will be treated as a gyro offset. If the plane then makes a 180 
degree turn, for a while the DCM algorithm will turn the plane by the opposite 
angle that it would need to compensate for the wind.  

The third condition is when the plane is traveling vertically. During that time 
the X axis of the plane is vertical, and equation 23 yields zero. 

For these reasons, it is best to use a large weight for the yaw drift 
correction. 

Accelerometers 
Accelerometers are used for roll-pitch drift correction because they have 

zero drift. We do have to worry about centrifugal acceleration, but that can be 
accounted for, and will be discussed shortly. 

When one of us (Bill) built his first board, he had hopes that accelerometers 
could be used by themselves for roll-pitch control. But they cannot, for a 
number of reasons. The main reason is that they measure a combination of 
acceleration and gravity. If they measured only gravity, they would be perfect. 
But they measure acceleration, too, and that can cause trouble. Bill once tried 
to use accelerometer-only based pitch stabilization during a hand launch of a 
sailplane. The acceleration of the launch fooled the controls into estimating 
that the plane was pitching up. The controls responded by pitching the plane 
straight down. 

The way an accelerometer typically works is that it measures the deflection 
of a small mass suspended by springs. The natural frequencies of the 
dynamics of the accelerometer are high, so it does respond quickly. The 
deflection depends on the total force on the mass, which is equal to its mass 
times the sum of the gravity vector plus the acceleration vector. (The usual 
sign convention for accelerometers is such that they indicate gravity minus 
the acceleration.)  
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So in addition to gravity, an accelerometer also measures acceleration. 
That should not be too surprising, since that is what they are called. 
Therefore, an accelerometer is useful as a roll-pitch indicator only when the 
plane is not accelerating. The problem is it is often accelerating. Some of the 
accelerations, such as centrifugal acceleration, are easy enough to compute 
and compensate for without having a model of the dynamics of the plane. 
However, there is no easy way to separately compute the forward 
acceleration. 

All is not lost. On average, a plane does not accelerate in the forward 
direction. There are times when it speeds up and when it slows down, but the 
accelerations cancel out. A plane cannot accelerate for long in the forward 
direction until aerodynamic drag prevents it from going any faster. A plane 
cannot decelerate for long without stopping and falling from the sky. As long 
as we are not depending on an accelerometer for fast transient response, we 
can use it for roll-pitch correction of gyro drift, because the accelerometer 
does not drift. 

There are many good accelerometers on the market, most of them will work 
just fine with the DCM algorithm. They are not as critical as gyros, because 
any change in their offsets does generate an accumulated error in the way 
that a gyro offset does. An accelerometer is a direct measurement of 
orientation, while a gyro is a measurement of the time rate of change of 
orientation. 

There are a variety of interface types, including analog voltage, pulse width 
modulation, and several standard communications interfaces. We chose an 
accelerometer with an analog voltage output as the simplest interface. 

The greatest advantage of using direction cosines is that they work for any 
orientation of the plane, without any singularities or special logic. Any 
orientation can be well-described by the 9 elements of the direction cosine 
matrix. Since we will need to perform the drift cancellation calculations for any 
orientation of the plane, we will need to measure acceleration along all three 
axes of the plane. This can be done with commercially available 3 axis 
accelerometers, or with 3 separate units.  

Before we can use the accelerometer information for roll-pitch drift 
compensation, we must account for the centrifugal acceleration associated 
with changes in direction of the planes forward velocity. Although a plane can 
accelerate or decelerate along the forward direction for a short while, it can 
turn indefinitely. 

Fortunately, the information needed to compute the centrifugal acceleration 
is readily available. Centrifugal acceleration is equal to the cross product of 
the rotation rate vector with the velocity vector. We do not need an exact 
answer, only one that is accurate on average. On average, the plane moves 
in the direction that it is pointed. Therefore, we can assume that the velocity 
vector is parallel to the X axis of the plane. GPS gives us the magnitude of 
the velocity over ground. Since ground is an inertial reference frame, we can 
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compute the velocity vector in the plane (body) frame of reference as being 
the velocity over ground, in the X direction.  

In the plane (body) frame of reference, we compute the centrifugal 
acceleration as the cross product of the gyro vector and the velocity vector: 
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Note that in equation 25, we only need to perform two multiplications, 
because two of the elements of the velocity vector in the plane (body) frame 
of reference are zero.  

The usual sign convention for commercial three axis accelerometers is that 
the Z axis points down, and the downward pull of gravity produces a positive 
output. Therefore, the output of the accelerometers is gravity minus the 
acceleration. To recover an estimate of gravity that is adjusted for centrifugal 
acceleration, we need to add the centrifugal acceleration estimate. Therefore, 
the reference measurement of gravity in the plane (body) frame is given by: 
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 Eqn. 26 

In addition to the reference measurement of gravity, we need an estimate 
based on the direction cosine matrix. It is furnished by the Z row of the 
direction cosine matrix, which is the projection of the earth frame of reference 
“down” axis along the axes of the plane (body) frame of reference. 
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The roll-pitch rotational correction vector in the body frame of reference is 

computed by taking the cross product of the Z row of the direction cosine 
matrix with the normalized gravity reference vector: 
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 Eqn. 27 

During very tight, continuous turns, the accelerometers might become 
saturated. In other words, the actual acceleration might exceed the range of 
the accelerometer. In that case, error will be introduced into the roll-pitch 
orientation estimate. The controls should be designed to avoid saturating the 
accelerometers. Similarly, the gyros can become saturated during rapid turns. 
That can be avoided by including gyro terms in the control feedback to limit 
the turning rate. 

Feedback controller 
Each of the rotational drift correction vectors (yaw and roll-pitch) are 

multiplied by weights and fed to a proportional plus integral (PI) feedback 
controller to be added to the gyro vector to produce a corrected gyro vector 
that is used as the input to equation 17. (Now is a good time to go back an 
look at Figure 1.) The calculation proceeds as follows. First we compute a 
weighted average of the total of the rotation corrections. In our case, there are 
just two corrections, but in general there could be more: 
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Next, we pass the total correction through a PI controller: 
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We then feed the gyro correction vector back into the rotation update 
equation by adding the correction vector to the gyro signal, as shown in Eqn. 
16. 

At this point, be have completed a full pass through the calculation. At the 
next time step we repeat the entire calculaton. 

Some readers may be wondering why we use a single feedback controller 
with weighted inputs rather than separate controllers for each of the two 
vectors. Actually, we could, except over a long period of time the separate 
integrators could accumulate equal and opposite errors that could eventually 
cause the integrators to saturate or roll over. Tests have shown that that 
would take a very long time. However, it is more correct to use a single 
controller. 

Selection of the weights and gains is a compromise between accuracy and 
speed of recovery to disturbances. The practical realities of the wind and gyro 
saturation favor using weights and gains that are large enough to recover in 
about 10 seconds. In the feedback loop, the DCM algorithm is a nonlinear 
integrator. Therefore, you can select the gains for the linearized equivalent 
dynamic model of the complete loop. 

Gyro characteristics 
Gyro sensitivity, operating range, offset, drift, calibration, and saturation 

must be taken into account in the implementation of DCM. 

• Gyro sensitivity – Usually expressed in millivolts per degree per 
second for a gyro with an analog output, gyro sensitivity is the gyro 
gain for converting rotation rate to a voltage. In the early phases of 
the development of DCM, it was thought that sensitive gyros, on the 
order of 15 millivolts per degree per second, were needed because 
they usually had low offset and drift. It turns out that DCM works well 
with other units with lower sensitivity. Gyro sensitivity is related to 
operating range. The more sensitive the gyro, the narrower the 
useful operating range and vice-versa. Gyro sensitivity must be 
taken into account for gyro calibration. Some analog gyros provide 
an output voltage that is referred to an absolute voltage reference. If 
such gyros are measured with a ratiometric A/D, then you should 
measure a known voltage reference to account for an apparent 
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dependency of the sensitivity and offset of the gyro with supply 
voltage. Other analog gyros may provide a ratiometric referenced 
output, in which case you use a ratiometric A/D, then you do not 
need to adjust for supply voltage variation. 

• Offset – The gyro offset is its output when there is no rotation. Gyro 
offset varies from unit to unit and also may vary with temperature 
and supply voltage. Most of the offset can be removed by simply 
measuring the offset during power up, provided you keep the gyros 
motionless at that time. The variation of offset with supply voltage 
and temperature is usually rather slow, so that DCM can continually 
remove the offset and maintain lock. 

• Drift – By drift we mean the integrated effects over time of a slowly 
varying offset and noise. Drift around all three axes can be 
completely eliminated with DCM as long as the aircraft continues to 
move forward. If it stops moving, there will be a yaw drift that 
depends on the residual offsets of the gyros. When it starts moving, 
the drift will be cancelled again in a few seconds. 

• Calibration – By calibration we mean applying the correct gain 
multipliers to the gyro signals before applying the update algorithm. 
Since the update algorithm is basically a nonlinear integrator, if the 
gains are set too high, the DCM computations will "over-rotate" 
during a continuous turn. If they are too low, DCM will "under-rotate". 
We found that you can operate DCM without setting the gains 
exactly. They do have to be set approximately correct in order to 
achieve drift lock. Nominal calibration works well enough as long as 
the feedback gains are large enough, in which the error that begins 
to accumulate during a continuous turn is treated as an offset and it 
is compensated for. 

• Saturation – If the rotation rate of the aircraft exceeds the maximum 
range of a gyro, the gyro will "saturate". This will generate an angular 
estimation error equal to the area between the actual rate and the 
saturated rate. There several practical ways of addressing this issue. 
The simplest solution is to use feedback gains that are large enough 
to erase the error in a reasonable amount of time, on the order of 10 
seconds, for example. This will still retain the “smoothness” and 
overall accuracy of IMU control. A second solution is to include some 
gyro feedback in the controls to reduce the rotation rate for the axis 
most likely to saturate. A third solution is to implement the full version 
of Mahony’s approach, and to integrate estimation with control, with 
a constraint applied to the desired turning rates. 

Wind 
The effects of wind must be considered, mostly with respect to yaw. Since 

we are using course over ground to achieve yaw lock, the direction cosine 
matrix axes will eventually align with the direction the plane is headed, not the 
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direction that it is pointed. This is fine when the plane is headed in a straight 
course back to RTL, or between way points if you use DCM for an autopilot. 
What will happen in that case is that the algorithm will treat the wind as drift, 
and gradually rotate the plane by the angle that is required to maintain the 
desired course over ground. However, when the plane makes a turn, it will 
take a finite amount of time for DCM to adapt to the new angle between the 
wind direction and the course over ground. There are two solutions to the 
problem: 

• Use feedback gains that are large enough to adapt to the wind within 
a few seconds after a change in wind or in course. This is the 
approach that we are presently using in our firmware. 

• Somehow compute the wind vector. In principle this should be 
possible to do, given the low residual gyro offset, provided the plane 
makes some turns. We are presently looking into this approach, to 
see if it will work better than the above approach. For now, we will 
continue to adapt to the wind after a turn, because that is actually 
working rather well. 

Using DCM in control and navigation 
In a previous section we described several applications of direction cosines 

for control and navigation. In this section we provide some more detail: 
1. To control the pitch of an aircraft, you need to know the pitch attitude of 

the aircraft, which you can find by taking the dot product of the roll axis 
of the aircraft with the ground vertical. 

The dot product of the roll axis (X) of the aircraft with the ground vertical (Z) 
is one of the direction cosines, zxr . It is equal to the sine of the angle between 
the roll axis and the horizontal plane in the earth frame of reference. So that 
element of the matrix is a direct indication of whether or not the roll axis of the 
plane is parallel to the ground, and can be used directly in a feedback loop to 
control pitch. When the plane is level, zxr  will be equal to zero. 

2. To control the roll of an aircraft, you need to know the bank attitude of 
the aircraft, which you can find by taking the dot product of the pitch 
axis of the aircraft with the ground vertical. 

The dot product of the pitch axis (Y) of the aircraft with the ground vertical 
(Z) is one of the direction cosines, zyr . It is equal to the sine of the angle 
between the pitch axis and the horizontal plane in the earth frame of 
reference. So that element of the matrix is a direct indication of whether or not 
the pitch axis of the plane is parallel to the ground, and can be used directly in 
a feedback loop to control pitch. When the plane is level, zyr  will be equal to 
zero. 

3. To navigate, you need to know the yaw attitude of the aircraft with 
respect to the direction that you want to go, which you can find by 
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taking the cross product of the roll axis of the aircraft with a vector in 
the direction that you want to go. This works even if you are upside 
down. To find out if your aircraft might be pointing in the opposite 
direction than you want to go, take the dot product of the roll axis with 
the desired direction vector. If it is negative, the aircraft is more than 90 
degrees off course. 

The roll axis vector of the aircraft is the first column of the R matrix. We only 
want the horizontal components, so we set the Z component to zero. The 
resulting vector is equal to [ ]0yxxx rr . We take the cross product of that 
vector with the desired direction vector to get the sine of the deviation angle, 
and we take the dot product to get the cosine. 

4. To find out if the aircraft is upside down, examine the sign of the dot 
product of the aircraft yaw axis with the vertical. If it is less than zero, 
the aircraft is upside down. 

The dot product of the aircraft yaw axis with the vertical is the matrix 
element zzr . When the plane is flying more or less level, this element is 
approximately one. When the plane is upside down, this element is 
approximately minus one. When the plane is banked sideways at a 90 degree 
angle, this element is zero. 

5. To find out the turning rate of the aircraft around the vertical earth axis, 
transform the gyro rotation vector to the earth frame of reference, and 
take the dot product with the vertical axis. 

This is equivalent to taking the dot product of the third row of the R matrix 
with the gyro rotation vector. So, the turning rate of the aircraft around the 
vertical earth axis is equal to zzzzyyzxx rrr ωωω ++ . 

Implementation 
We are planning to write a separate paper on how to implement the DCM 

algorithm in C code. Some readers may have access to firmware that we 
have written. If so, to avoid confusion, you should be aware of the following: 

This paper expresses all quantities using an aviation convention for the 3 
axes. X is forward, Y points along the right wing, and Z is down. However, the 
firmware that we have written uses a coordinate system that is somewhat 
different. X points along the left wing, Y is forward, and Z is down. The reason 
that we did this is because in the design of the board, the three axis 
accelerometer was mounted in such a way that when you mount the board in 
a plane with the longer dimension aligned in the most convenient orientation, 
the accelerometer, and the labels on the board, point the Y axis forward. 
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