
DCM 1 Draft: 5/17/2009

Direction Cosine Matrix IMU: Theory
William Premerlani and Paul Bizard

This is the first of a pair of papers on the theory and implementation of a

direction-cosine-matrix (DCM) based inertial measurement unit for application
in model planes and helicopters. Actually, at this point, it is still a draft, there
is still a lot more work to be done. Several reviewers, especially Louis
LeGrand and UFO-man, have made good suggestions on additions and
revisions that we should make and prepared some figures that we have not
included yet. We will eventually incorporate their suggestions, but it may take
a long time to get there. In the meantime, we think there is an audience who
can benefit from what we have so far.

The motivation for DCM was to take the next step in stabilization and
control functions from an inherently stable aircraft with elevator and rudder
control, to an aerobatic aircraft with ailerons and elevator. One of the authors
(Premerlani) built a two axes board several years ago, and developed
rudimentary firmware to provide stabilization and return-to-launch (RTL)
functions for a Gentle Lady sailplane. The firmware worked well enough, and
the author came to rely on the RTL feature, but it never seemed to work as
well as the author would like. In particular, satisfactory solutions to the
following two issues were never found:

• Mixing. It was recognized that in a banked turn, there were two
problems arising from the bank angle. First, the yaw rotation of the
aircraft around the turn generated a nuisance signal in the pitch gyro,
because of the banking. Second, in order to make a level turn, the
elevator needed some “up” deflection. The amount of deflection
depends on the bank angle, which could not be directly measured.
Both issues were opposite sides of the same coin.

• Acceleration. An accelerometer measures gravity minus
acceleration. The acceleration is equal to the total of all of the
aerodynamic forces (lift, thrust, drag, etc.) on the plane, plus the
gravity force, divided by the mass. Therefore, the accelerometer
measures the negative of the total of all of the aerodynamic forces.
The measurement of gravity is what is needed to level the plane but
that is not what you get out of an accelerometer during accelerated
motion. Acceleration is a confounding variable. In particular, when
the aircraft pitches up or down, for a short while it accelerates in
such a way that the output of an accelerometer does not change.
There is a similar effect that the NASA astronauts experience when
they are in training planes. A ballistic path can produce zero net
forces and therefore fool accelerometers temporarily. The
combination of this issue and the previous one prevented really tight

DCM 2 Draft: 5/17/2009

pitch control, and this issue prevented the use of pitch stabilization
during a hand launch.

It was realized that part of the problem was not having a six degree of
freedom inertial measurement unit (IMU), so it was decided to design a new
board. The UAV DevBoard from SparkFun was the result.

Coincidentally, one of us (Premerlani) decided he wanted to step up to an
aircraft with ailerons, and found that he just did not have the needed flying
skills. He crashed 5 times in one summer, and had to completely replace his
plane 3 times. So, he decided to use his new board for stabilization, shown
below, attached to his Goldberg Endurance with Velcro.

The question was, how best to do that? Working together, we came to the

same conclusion of Mahoney [1]. What is needed is a method that “fully
respects the nonlinearity of the rotation group.” Paul and I decided that we
should represent the rotation with a direction cosine matrix, that we could
maintain the elements of the matrix using gyro, accelerometer, and GPS
information, and that we could use the matrix for control and navigation. At a
high level, here is how DCM works:

1. The gyros are used as the primary source of orientation information.
We integrate the nonlinear differential kinematic equation that relates
the time rate of change in the orientation of the aircraft to its rotation
rate, and its present orientation. This is done at a high rate, (40 to 50
Hz) often enough to give the servos fresh information for each and
every PWM pulse that is sent to the servos.

DCM 3 Draft: 5/17/2009

2. Recognizing that numerical errors in the integration will gradually
violate the orthogonality constraints that the DCM must satisfy, we
make regular, small adjustments to the elements of the matrix to
satisfy the constraints.

3. Recognizing that numerical errors, gyro drift, and gyro offset will
gradually accumulate errors in the DCM elements, we use reference
vectors to detect the errors, and a proportional plus integral (PI)
negative feedback controller between the detected errors and the gyro
inputs used in step 1, to dissipate the errors faster than they can build
up. GPS is used to detect yaw error, accelerometers are used to detect
pitch and roll.

The process is shown schematically in Figure 1.

ErrorAdjustment

PI Controller

[RMatrix]

Orientation

W Rmatrix

Kinematics
&Normalization

[XYZGyros]

Gyros

[Accelerometers]

Gravity

DriftAdjustment

Rmatrix

Yaw

Pitch Roll

Error

Drift Detection

[GPS]

Course

Figure 1 Block diagram of DCM

No doubt you are wondering what a rotation group is, and why it should be
respected. You also might be wondering how you can use DCM for control
and navigation. You also might have the same questions that UFO-MAN
asked on the subject after he read Mahoney’s paper, so we will start with
those questions:

• What is a quaternion and why do we use that instead of vector
notation?

• What is meant by a rotation group?

• What is a rotation matrix?

• What does it mean to maintain orthogonality of the rotation matrix?

• What is an anti symmetric matrix?

• Can you briefly explain kinematics in this rotation matrix context?

• Can you briefly explain dynamics in this rotation matrix context?

DCM 4 Draft: 5/17/2009

All of this is concerned with rotations. Physically, what we are trying to do is
represent the orientation of our aircraft with respect to the earth as a rotation.
There are several ways to do this. Mahony's paper discusses two alternate
ways, rotation matrices and quaternions. Both approaches are similar in
motivation, they are representing rotations without approximations and
without singularities. Quaternions have the advantage of requiring only 4
values, while rotation matrices have 9. Rotation matrices have the advantage
of being a natural fit to control and navigation. We chose rotation matrices as
having a slight advantage, and for being more familiar to us.

R-1 =

xe ye ze

xb

yb

zb

R =

xb yb zb

xe

ye

ze

A rotation matrix describes the orientation of one coordinate system with

respect to another. The columns of the matrix are the unit vectors in one
system as seen in the other system. A vector in one system can be
transformed into the other system by multiplying it by the rotation matrix. The
transformation in the reverse direction is accomplished with the inverse of the
rotation matrix, which turns out to be equal to its transpose. (The transpose is
just the swap of rows and columns.) Unit vectors are useful in the control and
navigation computations, because their length is one. Therefore they can be
used in dot and cross products to obtain the sine or cosine of various angles.

y’ = R.y

y = R-1.y’

x

y
z

x’

y’
z’

R-1 = tR

R.R-1 = I

tR.R = I

DCM 5 Draft: 5/17/2009

As your plane flies along, it is possible to describe its motion with a
translation (movement of its center of gravity) and a rotation (change in
orientation around its center of gravity). Its orientation with respect to the
earth can be described by specifying a rotation about an axis. By starting with
the plane level and pointing in a standard direction and applying the rotation,
you will place the plane in its actual orientation. Any orientation can be
described as a rotation from the “standard” position.

A rotation group is the group of all possible rotations. It is called a group
because any two rotations in the group can be composed to produce another
rotation in the group, every rotation has an inverse rotation, and there is an
identity rotation. That is the definition. However, the way that we like to think
about it as being a group is that you can wind up going around a complete
circle and arriving back where you started. The rotation group is closed.

The reason that the rotation group should be respected is that by doing
that, you make the fewest approximations and are able to perform control and
navigation with the plane in any orientation, including upside down and
pointing vertical. You can do aerobatics without making any approximations.

The basic idea is that the rotation matrix that defines the orientation of your
aircraft can be maintained by integrating the nonlinear differential equation
that describes the kinematics of the rotation. (We will present the nonlinear
differential equation shortly, and explain why it is nonlinear.) Kinematics is
concerned with the geometry of the rotation of a rigid body, and how the
rotation transforms one rigid configuration into another configuration. This is
done by recognizing that the integration can be accomplished via a series of
matrix compositions.

By matrix composition we simply mean multiplying two rotation matrices
together. It can be shown that the resulting matrix represents the net rotation
that results from applying the two rotations in sequence that each of the
matrices represents.

However, numerical integration introduces numerical errors, and does not
produce the same result that symbolic integration. An exact symbolic
integration of the exact gyro signals will produce the exactly correct rotation
matrix. Numerical integration, even if we had the exact gyro signals, will
introduce two sorts of numerical errors:

• Integration error. Numerical integration uses a finite time step and
data that is sampled at a finite sampling rate. Depending on the
method that you use to do the integration, you are making certain
assumptions about what is happening between data samples. The
method that we use in our implementation assumes that the rotation
rate is constant over the time step. This introduces an error that is
proportional to the rotational acceleration.

• Quantization error. No matter what representation you use for the
values, the digital representation is finite, so there is a quantization

DCM 6 Draft: 5/17/2009

error, starting at the analog to digital converter, and building
whenever you perform a calculation that does not preserve all of the
bits of the result.

One of the key properties of the rotation matrix is its orthogonality, which
means that if two vectors are perpendicular in one frame of reference, they
are perpendicular in every frame of reference. Also, that the length of a vector
is the same in every frame of reference. Numerical errors can violate this
property. For example, since the rows and columns are supposed to
represent unit vectors, their magnitude should be equal to one, but numerical
errors could cause them to get smaller or larger. Eventually they could shrink
to zero, or go to infinity. The rows and columns are supposed to be
perpendicular to each other, numerical errors could cause them to "lean" into
each other, as shown below:

The rotation matrix has 9 elements. Actually, only 3 of them are

independent. The orthogonality property of the rotation matrix in mathematical
terms means that any pair of columns (or rows) of the matrix are
perpendicular, and that the sum of the squares of the elements in each
column (or row) is equal to 1. So, there are 6 constraints on the 9 elements.

R =

xb yb zb

xe

ye

ze

||xb|| = 1

||yb|| = 1

||zb|| = 1

xb yb

xb zb

yb zb

An antisymmetric matrix is a matrix in which each element in the matrix is

equal to the negative of the element with swapped row and column index. So,
for example, if the element in the first row, third column is 0.5, then the

DCM 7 Draft: 5/17/2009

element in the third row, first column must be -0.5. Also, the elements on the
diagonal of an antisymmetric matrix must be zero.

It turns out that a small rotation can be described with an antisymmetric
matrix as shown below:

0 a b

-a 0 c

-b -c 0

In our case, kinematics is concerned with the implications of rigid body

rotation. It results in a nonlinear differential equation that describes the time
evolution of the orientation of the body in terms of its vector rotation rate. The
direction cosine matrix is all about kinematics.

Dynamics in our case is the application of Newton's laws to describe the
time rate of change of the rotation rate vector in terms of the applied torques.

By the way, the dynamics in Mahony's paper are NOT accurate for planes,
they were concerned mainly with helis and vertical take-offs. Mahony's paper
describes how to implement a combined orientation measurement and control
algorithm. What Paul and I are doing involves kinematics only. We have
completely ignored dynamics for now. The kinematics (rotation matrix) by
itself is very useful for providing a basis for control and navigation of model
airplanes.

You are probably still wondering how to use DCM. Control and navigation
can be accomplished with DCM entirely in Cartesian coordinates using vector
cross products and dot products. For example, at a high level, here is how
you accomplish these four control and navigation calculations.

1. To control the pitch of an aircraft, you need to know the pitch attitude of
the aircraft, which you can find by taking the dot product of the roll axis
of the aircraft with the ground vertical.

2. To control the roll of an aircraft, you need to know the bank attitude of
the aircraft, which you can find by taking the dot product of the pitch
axis of the aircraft with the ground vertical.

3. To navigate, you need to know the yaw attitude of the aircraft with
respect to the direction that you want to go, which you can find by
taking the cross product of the roll axis of the aircraft with a vector in
the direction that you want to go. This works even if you are upside
down. To find out if your aircraft might be pointing in the opposite

DCM 8 Draft: 5/17/2009

direction than you want to go, take the dot product of the roll axis with
the desired direction vector. If it is negative, the aircraft is more than 90
degrees off course.

4. To find out if the aircraft is upside down, examine the sign of the dot
product of the aircraft yaw axis with the vertical. If it is less than zero,
the aircraft is upside down.

5. To find out the turning rate of the aircraft around the vertical earth axis,
transform the gyro rotation vector to the earth frame of reference, and
take the dot product with the vertical axis.

We now get deeper into the details of the theory.

Axis conventions
To describe the motion of an airplane it is necessary to define a suitable

coordinate system. For most problems dealing with aircraft motion, two
coordinate systems are used. One coordinate system is fixed to the earth and
may be considered for the purpose of aircraft motion analysis to be an inertial
coordinate system. The other coordinate system is fixed to the airplane and is
referred to as a body coordinate system. Figure 2 shows the two right-handed
coordinate systems.

xe

ye

ze

xb

yb

zb

φ

θ

φ

θ

ψ

ψ

Figure 2 Body fixed frame and earth fixed frame

The orientation of the airplane is often described by three consecutive

rotations, whose order is important. The angular rotations are called the Euler
angles. The orientation of the body frame with respect to the fixed earth frame
can be determined in the following manner. Imagine the airplane to be

DCM 9 Draft: 5/17/2009

positioned so that the body axis system is parallel to the fixed frame and then
apply the following rotations:

1. Rotate the body about its zb axis through the yaw angle ψ

2. Rotate the body about its yb axis through the pitch angle θ

3. Rotate the body about its xb axis through the roll angle φ

yb

xb

zb

Figure 3 Body axes coordinate system

Direction cosine matrices
Certain types of vectors, such as directions, velocities, accelerations, and

translations, (movements) can be transformed between rotated reference
frames with a 3X3 matrix. We are interested in the plane frame of reference
and the ground frame of reference. It is possible to rotate vectors by
multiplying them by a matrix of direction cosines:

PG

G

P

RQQ

R

QQ
QQ

Q

=

=
















=

=
=

=















=

matrixrotation

ground theof reference of frame in the measured vector a
plane theof reference of frame in the measured vector a

onacceleratior velocity direction, a assuch vector,a

zzzyzx

yzyyyx

xzxyxx

z

y

x

rrr
rrr
rrr

Q
Q
Q

 Eqn. 1

DCM 10 Draft: 5/17/2009

The relation between the direction cosine matrix and Euler angles is:

















−
−+
+−

=

θφθφθ
ψφψθφψφψθφψθ
ψφψθφψφψθφψθ

coscoscossinsin
cossinsinsincoscoscossinsinsinsincos
sinsincossincossincoscossinsincoscos

R

 Eqn. 2

Equation 1 and equation 2 expresse how to rotate a vector measured in the
frame of reference of the plane to the frame of reference of the ground.
Equation 1 is expressed in terms of direction cosines. Equation 2 is
expressed in terms of Euler angles.

In equation 1, each component of the vector in the ground frame is equal to
the dot product of the corresponding row of the rotation matrix with the vector
in the plane frame. Nine multiplies and six additions are required to compute
the rotation. Equation 3 is a restatement of equation 1, with the matrix
multiplication expanded in terms of the elements of the vectors and the
matrix.

PzzzPyzyPxzxGz

PzyzPyyyPxyxGy

PzxzPyxyPxxxGx

QrQrQrQ
QrQrQrQ
QrQrQrQ

++=

++=

++=

 Eqn. 3

Note that the R matrix is not necessarily symmetric. The three columns of
the R matrix are the transformations of the three axis vectors of the plane to
the ground frame of reference. The three rows of the R matrix are the
transformations of the three axis vectors of the ground coordinate system to
the plane frame of reference. The R matrix contains all the information
needed to express the orientation of the plane with respect to the ground. The
R matrix is also called the direction cosine matrix, because each entry is the
cosine of the angle between an axis of the plane and an axis on the ground.
Although it would appear that there are 9 independent parameters in the R
matrix, there are really only 3 independent ones, because of the six so-called
orthogonality (also known as normalization) conditions: the three column
vectors are mutually perpendicular and the magnitude of each column vector
is equal to one.

The transpose of any matrix, and the rotation matrix in particular, indicated
as TR , is formed by interchanging rows and columns. In general, the inverse
of a square matrix, if it exists, is indicated as 1R− . The inverse of a matrix
times the matrix produces the identity matrix. (The identity matrix has all ones
on the diagonal, and all zeros everywhere else. Multiplying any matrix by the
identity matrix leaves it unchanged. In the case of rotation matrices, it turns
out that the transpose of the R matrix is equal to its inverse:

DCM 11 Draft: 5/17/2009

G
T

G
1

P

T1

QRQRQ

RR

==

















==

−

−

zzyzxz

zyyyxy

zxyxxx

rrr
rrr
rrr

 Eqn. 4

The reason that the inverse of the rotation matrix is equal to its transpose is
because of the symmetry of the situation. The elements of the rotation matrix
are the cosines between pairs of axis, one in the plane frame, and one in the
ground frame. The inverse situation is equivalent to exchanging the roles of
the ground and plane frame of reference, which is the same as interchanging
rows and columns, which is the same as the transpose.

Also, the fact that the inverse is equal to the transpose is consistent with the
orthogonality conditions, which can be expressed in matrix notation as:
















===

100
010
001

IRRRR TT Eqn. 5

Equation 5 can be used to prove that the inverse of R is R transpose, by
multiplying the equation by the inverse of R, or by the inverse of R transpose.

A very useful property of the rotation matrix is that we can compose
rotations. We can multiply several rotations matrices together, and get a
rotation matrix that is equivalent to applying all of the rotations in succession.
We have to be careful to apply the rotations in succession on the left side of
what we already have. For example, if we have three rotation matrices, from
orientation A to orientation B, from B to C, and from C to D, we can compute
the rotation matrix that will go from orientation A to orientation D according to:

D A to frommatrix rotation
D toC frommatrix rotation
C toB frommatrix rotation
B A to frommatrix rotation

=
=
=
=
=

DA

DC

CB

BA

BACBDCDA

R
R
R
R

RRRR

 Eqn. 6

The reason that we have to be careful about the sequence of operations
when multiplying rotations matrices is that matrix multiplication is NOT
commutative. That is, the order of matrix multiplication matters very much..
This is consistent with rotations, which are not commutative either. For
example, consider what happens if a plane pitches around its own pitch and
roll axes by 90 degrees each. The order very much matters. Suppose that is
pitches up by 90 degrees, followed by a roll of 90 degrees. At that point the
plane will be traveling vertically. However, if it rolls first, and then banks, it will
be traveling in the horizontal plane.

DCM 12 Draft: 5/17/2009

Finally, there is a useful identity that applies to matrices in general, and to
rotation matrices in particular. The transpose of the product of two matrices is
equal to the product of the transposes of the matrices, with the two matrices
swapped:

 ()
matrices are BA,
ABAB TTT = Eqn. 7

Vector dot and cross products
Two very useful vector products that we will use in computing DCM and in

using its elements for navigation and control are the dot product and the cross
product. The dot product of two vectors A and B, is a scalar computed by
performing a matrix multiplication of a A as a row vector with B as a column
vector producing:

 [] zzyyxx

z

y

x

zyx BABABA
B
B
B

AAA ++=















==⋅ BABA T Eqn. 8

It turns out that the vector dot product produces a result that is equal to the
product of the magnitudes of the two vectors, times the cosine of the angle
between them:

 ()ABθcos⋅=⋅ BABA Eqn. 9

We note that the dot product is commutative: ABBA ⋅=⋅
The cross product of two vectors A and B, is a vector whose components

are computed by:

()
()
() xyyxz

zxxzy

yzzyx

BABA
BABA
BABA

−=×

−=×

−=×

BA

BA

BA

 Eqn. 10

The cross product is perpendicular to both of its vector factors and its
magnitude is proportional to the magnitudes of the vectors times the sine of
the angle between them:

DCM 13 Draft: 5/17/2009

u

v

w

w = u v = ||u||.||v||.sin(θ).k

k

k : unit vector orthogonal to the plane defined by u and v

||w|| = ||u||.||v||.sin(θ)

θ

Stated another way:

() ()

()ABθsin
0

BABA
BBAABA

=×

=⋅×=⋅×
 Eqn. 11

We note that the cross product is anti-commutative. ABBA ×−=×

Computing direction cosines from gyro signals
With the preliminaries out of the way, we now move on to the central

concept of the DCM algorithm: the nonlinear differential equation that relates
the time rate of change of the direction cosines to the gyro signals. Our goal
is to compute the direction cosines without making any approximations that
violate the nonlinearity of the equations. For the moment, we assume that the
gyro signals have no errors. Later on we will address the issue of gyro drift.

Unlike rotating mechanical gyros, which stay fixed in space while the
aircraft rotates around them, electronic rate gyros rotate with the aircraft,
producing signals proportional to the rotation rate. Since rotations do not
commute, and the sequence of rotations matter, we cannot get by with simply
integrating the gyro rate signals to get angles, that will not work. What we
have to do is look to the kinematics of rotations to see what we need to do to
get the correct answer.

A well known result of kinematics is that the rate of change of a rotating
vector due to its rotation is given by:

() () ()

() vectorraterotation =

×=

t

tt
dt
td

ω

rωr
 Eqn. 12

We make the following observations:

DCM 14 Draft: 5/17/2009

1. The differential equation is nonlinear. The rotation vector input is
(cross) multiplied by the variable that we are trying to integrate.
Therefore, any linear approach will be only an approximation.

2. Both vectors must be measured in the same reference frame.
3. Because the cross product is anticommutative, we could reverse the

order and change the sign.
If we know the initial conditions and the time history of the rotation vector,

we can numerically integrate equation 11 to track the rotating vector:

() () () ()

() ()
()

() () vectorin the change

 vector theof valuestarting 0

0

0

0

=×

=
=

×+=

∫

∫

t

t

d

dd

dt

ττ

τττ

ττ

rθ

r
ωθ

rθrr

 Eqn. 13

Our strategy is going to be to apply equation 13 to the rows or the columns
of the R matrix, treating them as rotating vectors.

The first snag that we run into is that the vectors that we want to track, and
the rotation vector, are not measured in the same reference frame. Ideally,
we would like to track the axes of the aircraft in the earth frame of reference,
but the gyro measurements are made in the aircraft frame of reference. There
is an easy solution to the issue by recognizing the symmetry in the rotation. In
the frame of reference of the plane, the earth frame is rotating equal and
opposite to the rotation of the plane in the earth frame. So we can track the
earth axes as seen in the plane frame by flipping the sign of the gyro signals.
As a matter of convenience, we can flip the sign back, and interchange the
factors in the cross product:

() () () ()

() ()
() plane thefrom viewedas axes,earth theof one

0
0

=
=

×+= ∫

t
dd

dt

earth

t

earthearthearth

r
ωθ

θrrr

τττ

ττ

 Eqn. 14

The vectors in equation 14 are the rows of the R matrix in equation 1. The
next question is how to conveniently implement equation 14. We take the
same matrix approach that Mahoney [1] uses. We start by going back to the
differential form of equation 14:

() () () ()

() ()dtttd
tdttdtt earthearthearth

ωθ
θrrr

=
×+=+

 Eqn. 15

There is one more thing that we need to do, in anticipation of the drift
cancellation that we will be doing later on. We need to add the correction
rotation rate that comes out of the proportional plus integral drift

DCM 15 Draft: 5/17/2009

compensation feedback controller to the measurement that the gyros make,
to produce our best estimate of the true rotation rate:

() () ()

()
() correction gyro

tsmeasuremen gyro axis three
=

=

+=

t
t

ttt

correction

gyro

correctiongyro

ω

ω

ωωω

 Eqn. 16

Later on we will explain the details of computing the gyro correction vector.
Basically, the GPS and accelerometer reference vectors that we have are
used to compute a rotational error, which is fed into the computation through
the feedback controller, and back into the rotation update equation via
equation Eqn. 16.

When we repeat equation 14 for each of the earth axes, we can put the
result into a convenient matrix form:

() ()

dtd
dtd
dtd

dd
dd
dd

tdtt

zz

yy

xx

xy

xz

yz

ωθ

ωθ
ωθ

θθ
θθ

θθ

=

=
=

















−
−

−
=+

1
1

1
RR

 Eqn. 17

Equation 17 is a recipe for updating the direction cosine matrix from gyro
signals. It is equivalent to Manhoney’s result. The values of 1 on the diagonal
of the matrix in equation 17 represent the first term in equation 15. The
smaller, off-diagonal elements represent the second term in equation 15.
Equation 17 is implemented numerically by repeated matrix multiplications,
with short time steps. Each matrix multiplication requires 27 multiplications
and 18 additions. It maps well to the dsPIC30F4011, which has hardware
resources to perform matrix multiplication efficiently. It can be performed on
CPUs that do not have matrix support, in which case it is recommended to
use integer arithmetic.

The only approximation that equation 17 makes is that the time step is short
enough so that the R matrix does not change much from step to step. A
typical time step is around 0.020 seconds, during which an aircraft rotating at
around 60 degrees per second rotates approximately 0.020 radians, which
translates to a maximum change in any of the R matrix coefficients of around
2%. Thus, the second order terms that are being ignored are on the order of
0.02%.

Tests and simulations have shown that implementation of equation 15 by
itself, with gyros with modest performance, yields very accurate results that
achieve very low drift, on the order of a few degrees per minute. The drift is
so low that it is a simple matter to adjust for it without compromising
performance. However, by itself, equation 15 will eventually accumulate

DCM 16 Draft: 5/17/2009

numerical round-off and gyro drift, offset, and gain errors. In the next two
sections we will explain how to cancel the errors.

Renormalization
Numerical errors will gradually reduce the orthogonality conditions

expressed by equation 5 to approximations rather than identities. In effect, the
axes in the two frames of reference no longer describe a rigid body.
Fortunately, numerical error accumulates very slowly, so it is a simple matter
to stay ahead of it.

We call the process of enforcing the orthogonality conditions
“renormalization”. We devised several ways that it could be done. Simulations
showed they all worked quite well, so in the end, we settled on the simplest
approach. It works as follows.

First we compute the dot product of the X and Y rows of the matrix, which is
supposed to be zero, so the result is a measure of how much the X and Y
rows are rotating toward each other:

[]
















==⋅=

















=















=

yz

yy

yx

xzxyxx

yz

yy

yx

xz

xy

xx

r
r
r

rrrerror

r
r
r

r
r
r

YXYX

YX

T

 Eqn. 18

We apportion half of the error each to the X and Y rows, and approximately
rotate the X and Y rows in the opposite direction by cross coupling:

XYY

YXX

2

2

error

r
r
r

error

r
r
r

orthogonal

orthogonalyz

yy

yx

orthogonal

orthogonalxz

xy

xx

−==
















−==
















 Eqn. 19

You can verify that the orthogonality error is greatly reduced by substituting
equation 19 into 18, keeping in mind that the magnitude of each row and
column of the R matrix is approximately equal to one. Apportioning the error
equally to each vector yields a lower residual error after the correction than if
the error were assigned entirely to one of the vectors.

The next step is to adjust the Z row of the matrix to be orthogonal to the X
and Y row. The way we do that is to simply set the Z row to be the cross
product of the X and Y rows:

DCM 17 Draft: 5/17/2009

 orthogonalorthogonalorthogonal

orthogonalxz

xy

xx

r
r
r

YXZ ×==















 Eqn. 20

The last step in the renormalization process is to scale the rows of the R
matrix to assure that each has a magnitude equal to one. One way we could
do that is to divide each element of each row by the square root of the sums
of the squares of the elements in that row. However, there is an easier way to
do that, by recognizing that the magnitudes will never be much different than
one, so we can use a Taylor’s expansion. The resulting magnitude
adjustment equations for the row vectors are:

()

()

() orthogonalorthogonalorthogonalnormalized

orthogonalorthogonalorthogonalnormalized

orthogonalorthogonalorthogonalnormalized

ZZZZ

YYYY

XXXX

⋅−=

⋅−=

⋅−=

3
2
1

3
2
1

3
2
1

 Eqn. 21

What equation 21 says to do to adjust the magnitude of each row vector to
one, is to subtract the dot product of the vector with itself (the square of the
magnitude), subtract from three, multiply by ½, and multiply each element of
the vector by the result.

There are not that many multiplies and additions in the normalization
process. There are no divisions or square roots. We perform the calculation
for each step of the integration, every 0.020 seconds.

Drift cancellation
Although the gyros perform rather well, with an uncorrected offset on the

order of a few degrees per second, eventually we have to do something about
their drift. What is done is to use other orientation references to detect the
gyro offsets and provide a negative feedback loop back to the gyros to
compensate for the errors in a classical detection and feedback loop, as
shown if Figure 1. The steps are:

1. Use orientation reference vectors to detect orientation error by
computing a rotation vector that will bring the measured and computed
values of reference vectors into alignment.

2. Feed the rotation error vector back through a proportional plus integral
(PI) feedback controller to produce a rotation rate adjustment for the
gyros. (A PI regulator is a special case of a commonly used feedback
regulator called a PID regulator. The D stands for derivative. In our
case, we do not need the derivative term.)

3. Add (or subtract, depending on your sign convention for the rotation
error) the output of the PI controller to the actual gyro signals.

DCM 18 Draft: 5/17/2009

The main requirement for an orientation reference vector is that it does not
drift. Its transient performance is not that important because it is the gyros
that provide the transient fidelity for the orientation estimate.

Our two reference vectors are supplied by GPS and accelerometers.
Magnetometers are also useful, particularly for yaw control of hovering
applications, but for aircraft that fly generally in the direction that they are
pointed, a GPS will do just fine. If you use a magnetometer, to provide a
vector reference you should use a three axis magnetometer. Low cost three
axis magnetometers are commercially available.

We use accelerometers to provide a reference vector for the Z axis of the
airplane. Details will be given in a separate section. We use the GPS as a
reference for the horizontal projection of the X axis (roll axis) of the plane. Our
two reference vectors happen to be perpendicular to each other. That is
convenient, but not absolutely necessary.

For either of the two reference vectors, the orientation error is detected by
taking the cross product of the measured vector with the vector that is
estimated by the direction cosine matrix. The cross product is particularly
appropriate for two reasons. Its magnitude is proportional to the sine of the
angle between the two vectors, and its direction is perpendicular to both of
them. So it represents an axis of rotation, and an amount of rotation, that
would be needed to rotate the measured vector to become parallel to the
estimated vector. In other words, it is equal to the negative of the orientation
rotational error. By feeding it back to the gyros through the PI controller, the
estimated orientation is gradually forced to track the reference vectors, and
gyro drift is cancelled.

The cross product of a measured reference vector with a corresponding
vector computed from the direction cosine matrix is an indication of the error.
It is approximately equal to the rotation that would have to be applied to the
reference vector to bring it into alignment with the computed vector. We are
interested in the amount of rotation correction that we need to apply to the
direction cosine matrix, which is equal to the negative of the error rotation. So,
it is convenient to compute the correction by interchanging the order in the
cross product. The correctional rotation is equal to the cross product of the
vector estimated by the direction cosines with the reference vector.

We use a proportional plus integral feedback controller to apply the rotation
correction to the gyros, because it is stable and because the integral term
completely cancels gyro offset, including thermal drift, with zero residual
orientation error.

The way that the reference vector errors map back onto the gyros is done
via the direction cosine matrix, so that the mapping depends on the
orientation of the IMU. For example, the GPS reference vector might correct
either the X, Y, Z, or combinations of X, Y and Z axis gyro signals, depending
on the orientation of the axes with respect to the earth frame.

DCM 19 Draft: 5/17/2009

We will now get into more detail for the two references that we are using.

GPS
GPS provides a drift-free reference vector for the yaw orientation of the

plane. The only reason that we do not use GPS by itself for yaw information is
that the transient response of the gyros is much faster than that of the GPS.
Instead, we use GPS as a reference vector to cancel gyro drift and achieve a
yaw “lock”.

Two of the major services provided by a GPS radio are reporting of location
and velocity magnitude and direction. The GPS determines its location and
velocity from the signals that it receives from orbiting satellites, and sends the
information out through its serial interface. For most GPS receivers, there are
two data formats, NMEA and binary. NMEA is a comma delimited, human
readable standardized ASCII format. In the binary interface, binary values are
transmitted as sequences of the ones and zeros of their internal binary
representation. The binary interface provides some additional information that
is not available in the NMEA interface.

The GPS must move in order to give direction information. Otherwise, there
is no way to determine the orientation of the GPS antenna. The velocity
vector reported by GPS is the change in position of the antenna in 1 second.
There are several ways a GPS might do the computation, but for all methods,
the GPS must move.

There are two different coordinate systems for GPS units to report location
and velocity. One system reports longitude, latitude, altitude, velocity over
ground, and course over ground. Course over ground is the angle of the
course measured clockwise from the north. Interestingly enough, this is the
same angle as measured in the mathematical sense (counter clockwise)
around the Z axis in the body reference frame of the plane, with the Z axis
pointing down. In this system, vertical velocity is available through the binary
interface.

The other system, ECEF (earth-centered, earth-fixed), reports X, Y, Z
position and velocity, with the origin of the right-handed X, Y, Z coordinate
system at the center of the earth.

A GPS delivers its information as a continuous sequence of reports,
typically once every second (1 Hz), though there is a trend toward higher
reporting rates, with 5 times a second (5 Hz) becoming more common.
However, a higher reporting rate does not necessarily lead to better
performance, because of the limitations imposed by the dynamics of the GPS
internal signal processing.

There are several factors that should be kept in mind in considering GPS
dynamics:

DCM 20 Draft: 5/17/2009

1. Reporting latency. Under certain circumstances, for some GPS units it
may take as long as 12 seconds for the computed data to be
transmitted.

2. Filtering. All GPS units perform some sort of filtering to improve the
accuracy of position and velocity estimation. This will result in a
smoothing effect on the data when the GPS changes its velocity or
position, so that the new information is not seen instantly, but rather
becomes apparent gradually.

3. Track smoothing and static navigation. Many types of GPS radios
provide a “track smoothing” option to ignore sudden changes in
position or velocity. This is useful for automotive applications to
prevent changes from being seen as the result in changes in the
satellite signals, such as when collection of satellites that are being
used changes. They also provide a “static navigation” option so that
variation in the apparent location is suppressed when the velocity falls
below a certain value. This is also useful for automotive applications.

It is not likely that you will every run into track smoothing or static
navigation, because the factory defaults are to turn these options off, but you
should be aware of them. However, reporting latency and filtering must be
taken into account.

By reporting latency we mean a simple time delay between when the GPS
measures position and velocity, and when it appears in the sequence of
messages. Usually this delay is the reporting time period. For example, if your
GPS is reporting at 5 Hz, the reporting latency is typically 0.2 seconds.
However, it could be much larger than that if you are not careful. One of us
(Bill) had the bad luck of stumbling into a 12 second latency with a reporting
rate of 1 Hz. It turned out that the 12 second delay was triggered by using a
combination of 4800 baud and the binary interface. It was reduced to a 1
second latency by changing the baud rate to 19,200. Chances are that you
will not run into this effect, but be aware that it exists. If you use the binary
interface, you should use a baud rate of 19,200 or greater.

In addition to a simple latency, you will generally also run into a delay
caused by internal filtering done by the GPS. All GPS units perform some sort
of filtering of the data by the very nature of how they do their computations.
There is an inherent compromise in any system between accuracy and
transient response. The more accurate you want to know something, the
longer it will take to estimate it. In most units, the filtering shows up as a
smoothing of the data. Typically, the dynamic response of many types of GPS
is a simple exponential response with a 1 second time constant, so that it
takes about 3 seconds to fully respond to a step change. If you ignore the
GPS dynamics, there will be a small error introduced into your navigation
calculations during a turn. One of us (Paul) saw that it is possible to
compensate for this small error by introducing a filter between the direction
cosine matrix and the input to the yaw drift correction. [Do we need a figure?].

DCM 21 Draft: 5/17/2009

That way, the dynamics of the two vectors used in the estimation of the yaw
error are matched.

It is often assumed that a GPS with a high reporting rate, such as 5 Hz, will
provide better dynamic performance that on with the most common reporting
rate, 1 Hz. However it is not necessarily the case that the higher reporting
rate will provide better dynamic response. Certainly, its latency will be less.
However, there is still the issue of the filter dynamics, which will generally turn
out to be the limiting effect.

The GPS horizontal course over ground signal has zero drift over the long
term, and can be used as a reference vector to achieve “yaw lock” for the
IMU. We considered also including the vertical velocity from the GPS, but
decided against it, in favor using the accelerometers for vertical information.

The assumption is made that the aircraft is moving in the direction that it is
pointing. Any transient errors in that assumption do not materially affect
performance. However, strong winds, particularly cross winds, do violate this
assumption. There are two approaches that you can take. One approach is to
somehow compute the wind vector from available information. We are
continuing to work on that. The other approach is to use moderate feedback
gains. The difference between the direction the aircraft is pointing and the
direction that it is moving will show up as an error at the input to the drift
correction feedback controller. The result will be that DCM will adapt to the
wind, and rotate the plane the amount required to keep it moving along the
desired course over ground.

The following figure shows how the yaw correction is computed:

DCM 22 Draft: 5/17/2009

xe

ye

ze

xb

yb

zb

φ

θ

φ

θ

ψm ψ

COG: GPS course over ground vector

xbp: projection of xb on earth xy plane ψ estimated yaw

ψm measured yaw

xbp COG = YawCorrectionGround

xbp

COG

|| xb || = 1 || xbp || = cos(θ)

(xb yb zb) body frame

(xe ye ze) earth frame

ψ yaw angle
θ pitch angle
φ roll angle

The rotational error between the GPS course over ground vector, and the

projection on the horizontal plane of the roll axis (X) of the IMU is an
indication of the amount of drift. The rotational correction is the Z component
of the cross product of the X column of the R matrix and the course over
ground vector.

First, we form the reference vector from the normalized horizontal velocity
vector. This can be done by simply taking the cosine and sine of the course
over ground angle, in the earth frame of reference:

()

)sin(
cos
cogCOGY
cogCOGX

=
=

 Eqn. 22

We then compute yaw correction:

 COGXrCOGYrionGroundYawCorrect yxxx −= Eqn. 23

However, equation 23 yields the yaw correction in the earth frame of
reference. In order to adjust the gyro drift, we will need to know the correction
vector in the aircraft (body) frame of reference. To compute that we must
multiply the yaw correction in the ground frame of reference by the Z row of
the R matrix:
















=

zz

zy

zx

r
r
r

ionGroundYawCorrectionPlaneYawCorrect Eqn. 24

DCM 23 Draft: 5/17/2009

The yaw correction vector produced by equation 24 will be combined with
roll-pitch correction computed from the accelerometers into a total vector that
is used to compensate for drift. Details of that computation will be given after
we discuss how the accelerometers are used.

There are three conditions relative to yaw drift compensation that argue for
a large weighting of the yaw correction, to enable a rapid response to yaw
error.

The first condition is initial yaw lock. When the algorithm starts up, it has no
way of knowing what direction the board is pointing. Even if it did, during the
time it waits for GPS lock, it will be drifting, and even after GPS is locked, the
GPS reported course over ground will be random numbers before the plane is
launched. By giving the yaw drift correction a large weight, yaw lock can be
achieved shortly after takeoff.

The second condition is winds. If the plane travels for a long time in a cross
wind, the wind will be treated as a gyro offset. If the plane then makes a 180
degree turn, for a while the DCM algorithm will turn the plane by the opposite
angle that it would need to compensate for the wind.

The third condition is when the plane is traveling vertically. During that time
the X axis of the plane is vertical, and equation 23 yields zero.

For these reasons, it is best to use a large weight for the yaw drift
correction.

Accelerometers
Accelerometers are used for roll-pitch drift correction because they have

zero drift. We do have to worry about centrifugal acceleration, but that can be
accounted for, and will be discussed shortly.

When one of us (Bill) built his first board, he had hopes that accelerometers
could be used by themselves for roll-pitch control. But they cannot, for a
number of reasons. The main reason is that they measure a combination of
acceleration and gravity. If they measured only gravity, they would be perfect.
But they measure acceleration, too, and that can cause trouble. Bill once tried
to use accelerometer-only based pitch stabilization during a hand launch of a
sailplane. The acceleration of the launch fooled the controls into estimating
that the plane was pitching up. The controls responded by pitching the plane
straight down.

The way an accelerometer typically works is that it measures the deflection
of a small mass suspended by springs. The natural frequencies of the
dynamics of the accelerometer are high, so it does respond quickly. The
deflection depends on the total force on the mass, which is equal to its mass
times the sum of the gravity vector plus the acceleration vector. (The usual
sign convention for accelerometers is such that they indicate gravity minus
the acceleration.)

DCM 24 Draft: 5/17/2009

So in addition to gravity, an accelerometer also measures acceleration.
That should not be too surprising, since that is what they are called.
Therefore, an accelerometer is useful as a roll-pitch indicator only when the
plane is not accelerating. The problem is it is often accelerating. Some of the
accelerations, such as centrifugal acceleration, are easy enough to compute
and compensate for without having a model of the dynamics of the plane.
However, there is no easy way to separately compute the forward
acceleration.

All is not lost. On average, a plane does not accelerate in the forward
direction. There are times when it speeds up and when it slows down, but the
accelerations cancel out. A plane cannot accelerate for long in the forward
direction until aerodynamic drag prevents it from going any faster. A plane
cannot decelerate for long without stopping and falling from the sky. As long
as we are not depending on an accelerometer for fast transient response, we
can use it for roll-pitch correction of gyro drift, because the accelerometer
does not drift.

There are many good accelerometers on the market, most of them will work
just fine with the DCM algorithm. They are not as critical as gyros, because
any change in their offsets does generate an accumulated error in the way
that a gyro offset does. An accelerometer is a direct measurement of
orientation, while a gyro is a measurement of the time rate of change of
orientation.

There are a variety of interface types, including analog voltage, pulse width
modulation, and several standard communications interfaces. We chose an
accelerometer with an analog voltage output as the simplest interface.

The greatest advantage of using direction cosines is that they work for any
orientation of the plane, without any singularities or special logic. Any
orientation can be well-described by the 9 elements of the direction cosine
matrix. Since we will need to perform the drift cancellation calculations for any
orientation of the plane, we will need to measure acceleration along all three
axes of the plane. This can be done with commercially available 3 axis
accelerometers, or with 3 separate units.

Before we can use the accelerometer information for roll-pitch drift
compensation, we must account for the centrifugal acceleration associated
with changes in direction of the planes forward velocity. Although a plane can
accelerate or decelerate along the forward direction for a short while, it can
turn indefinitely.

Fortunately, the information needed to compute the centrifugal acceleration
is readily available. Centrifugal acceleration is equal to the cross product of
the rotation rate vector with the velocity vector. We do not need an exact
answer, only one that is accurate on average. On average, the plane moves
in the direction that it is pointed. Therefore, we can assume that the velocity
vector is parallel to the X axis of the plane. GPS gives us the magnitude of
the velocity over ground. Since ground is an inertial reference frame, we can

DCM 25 Draft: 5/17/2009

compute the velocity vector in the plane (body) frame of reference as being
the velocity over ground, in the X direction.

In the plane (body) frame of reference, we compute the centrifugal
acceleration as the cross product of the gyro vector and the velocity vector:
















=

×=

0
0

velocity
V

VωA gyrolcentrifuga

 Eqn. 25

Note that in equation 25, we only need to perform two multiplications,
because two of the elements of the velocity vector in the plane (body) frame
of reference are zero.

The usual sign convention for commercial three axis accelerometers is that
the Z axis points down, and the downward pull of gravity produces a positive
output. Therefore, the output of the accelerometers is gravity minus the
acceleration. To recover an estimate of gravity that is adjusted for centrifugal
acceleration, we need to add the centrifugal acceleration estimate. Therefore,
the reference measurement of gravity in the plane (body) frame is given by:
















=

×+=

z

y

x

terAccelerome
terAccelerome
terAccelerome

terAccelerome

VωterAcceleromeg gyroreference

 Eqn. 26

In addition to the reference measurement of gravity, we need an estimate
based on the direction cosine matrix. It is furnished by the Z row of the
direction cosine matrix, which is the projection of the earth frame of reference
“down” axis along the axes of the plane (body) frame of reference.

DCM 26 Draft: 5/17/2009

xe

ye

ze

xb

yb

zbe

φ

θ

φ

∆θ

ψ

xbp

ψ yaw angle
θ pitch angle
φ roll angle

∆φ zee

xbe

ybe

zb

(xbe ybe zbe) estimated body frame

(xb yb zb) body frame

zee estimated earth z vector

ze earth z vector

On this drawing the
yaw angle is
assumed correct
but this is not
generally the case

The roll-pitch rotational correction vector in the body frame of reference is

computed by taking the cross product of the Z row of the direction cosine
matrix with the normalized gravity reference vector:

 referenceglaneorrectionPRollPitchC ×















=

zz

zy

zx

r
r
r

 Eqn. 27

During very tight, continuous turns, the accelerometers might become
saturated. In other words, the actual acceleration might exceed the range of
the accelerometer. In that case, error will be introduced into the roll-pitch
orientation estimate. The controls should be designed to avoid saturating the
accelerometers. Similarly, the gyros can become saturated during rapid turns.
That can be avoided by including gyro terms in the control feedback to limit
the turning rate.

Feedback controller
Each of the rotational drift correction vectors (yaw and roll-pitch) are

multiplied by weights and fed to a proportional plus integral (PI) feedback
controller to be added to the gyro vector to produce a corrected gyro vector
that is used as the input to equation 17. (Now is a good time to go back an
look at Figure 1.) The calculation proceeds as follows. First we compute a
weighted average of the total of the rotation corrections. In our case, there are
just two corrections, but in general there could be more:

DCM 27 Draft: 5/17/2009

ionPlaneYawCorrect

laneorrectionPRollPitchC
ctionTotalCorre

Y

RP

W
W
+

=
 Eqn. 28

Next, we pass the total correction through a PI controller:

nICorrectionPCorrectiocorrection

nICorrectionICorrectio

nPCorrectio

ωωω
ctionTotalCorreωω

ctionTotalCorreω

+=
+=

=
dtK

K

I

P

 Eqn. 29

We then feed the gyro correction vector back into the rotation update
equation by adding the correction vector to the gyro signal, as shown in Eqn.
16.

At this point, be have completed a full pass through the calculation. At the
next time step we repeat the entire calculaton.

Some readers may be wondering why we use a single feedback controller
with weighted inputs rather than separate controllers for each of the two
vectors. Actually, we could, except over a long period of time the separate
integrators could accumulate equal and opposite errors that could eventually
cause the integrators to saturate or roll over. Tests have shown that that
would take a very long time. However, it is more correct to use a single
controller.

Selection of the weights and gains is a compromise between accuracy and
speed of recovery to disturbances. The practical realities of the wind and gyro
saturation favor using weights and gains that are large enough to recover in
about 10 seconds. In the feedback loop, the DCM algorithm is a nonlinear
integrator. Therefore, you can select the gains for the linearized equivalent
dynamic model of the complete loop.

Gyro characteristics
Gyro sensitivity, operating range, offset, drift, calibration, and saturation

must be taken into account in the implementation of DCM.

• Gyro sensitivity – Usually expressed in millivolts per degree per
second for a gyro with an analog output, gyro sensitivity is the gyro
gain for converting rotation rate to a voltage. In the early phases of
the development of DCM, it was thought that sensitive gyros, on the
order of 15 millivolts per degree per second, were needed because
they usually had low offset and drift. It turns out that DCM works well
with other units with lower sensitivity. Gyro sensitivity is related to
operating range. The more sensitive the gyro, the narrower the
useful operating range and vice-versa. Gyro sensitivity must be
taken into account for gyro calibration. Some analog gyros provide
an output voltage that is referred to an absolute voltage reference. If
such gyros are measured with a ratiometric A/D, then you should
measure a known voltage reference to account for an apparent

DCM 28 Draft: 5/17/2009

dependency of the sensitivity and offset of the gyro with supply
voltage. Other analog gyros may provide a ratiometric referenced
output, in which case you use a ratiometric A/D, then you do not
need to adjust for supply voltage variation.

• Offset – The gyro offset is its output when there is no rotation. Gyro
offset varies from unit to unit and also may vary with temperature
and supply voltage. Most of the offset can be removed by simply
measuring the offset during power up, provided you keep the gyros
motionless at that time. The variation of offset with supply voltage
and temperature is usually rather slow, so that DCM can continually
remove the offset and maintain lock.

• Drift – By drift we mean the integrated effects over time of a slowly
varying offset and noise. Drift around all three axes can be
completely eliminated with DCM as long as the aircraft continues to
move forward. If it stops moving, there will be a yaw drift that
depends on the residual offsets of the gyros. When it starts moving,
the drift will be cancelled again in a few seconds.

• Calibration – By calibration we mean applying the correct gain
multipliers to the gyro signals before applying the update algorithm.
Since the update algorithm is basically a nonlinear integrator, if the
gains are set too high, the DCM computations will "over-rotate"
during a continuous turn. If they are too low, DCM will "under-rotate".
We found that you can operate DCM without setting the gains
exactly. They do have to be set approximately correct in order to
achieve drift lock. Nominal calibration works well enough as long as
the feedback gains are large enough, in which the error that begins
to accumulate during a continuous turn is treated as an offset and it
is compensated for.

• Saturation – If the rotation rate of the aircraft exceeds the maximum
range of a gyro, the gyro will "saturate". This will generate an angular
estimation error equal to the area between the actual rate and the
saturated rate. There several practical ways of addressing this issue.
The simplest solution is to use feedback gains that are large enough
to erase the error in a reasonable amount of time, on the order of 10
seconds, for example. This will still retain the “smoothness” and
overall accuracy of IMU control. A second solution is to include some
gyro feedback in the controls to reduce the rotation rate for the axis
most likely to saturate. A third solution is to implement the full version
of Mahony’s approach, and to integrate estimation with control, with
a constraint applied to the desired turning rates.

Wind
The effects of wind must be considered, mostly with respect to yaw. Since

we are using course over ground to achieve yaw lock, the direction cosine
matrix axes will eventually align with the direction the plane is headed, not the

DCM 29 Draft: 5/17/2009

direction that it is pointed. This is fine when the plane is headed in a straight
course back to RTL, or between way points if you use DCM for an autopilot.
What will happen in that case is that the algorithm will treat the wind as drift,
and gradually rotate the plane by the angle that is required to maintain the
desired course over ground. However, when the plane makes a turn, it will
take a finite amount of time for DCM to adapt to the new angle between the
wind direction and the course over ground. There are two solutions to the
problem:

• Use feedback gains that are large enough to adapt to the wind within
a few seconds after a change in wind or in course. This is the
approach that we are presently using in our firmware.

• Somehow compute the wind vector. In principle this should be
possible to do, given the low residual gyro offset, provided the plane
makes some turns. We are presently looking into this approach, to
see if it will work better than the above approach. For now, we will
continue to adapt to the wind after a turn, because that is actually
working rather well.

Using DCM in control and navigation
In a previous section we described several applications of direction cosines

for control and navigation. In this section we provide some more detail:
1. To control the pitch of an aircraft, you need to know the pitch attitude of

the aircraft, which you can find by taking the dot product of the roll axis
of the aircraft with the ground vertical.

The dot product of the roll axis (X) of the aircraft with the ground vertical (Z)
is one of the direction cosines, zxr . It is equal to the sine of the angle between
the roll axis and the horizontal plane in the earth frame of reference. So that
element of the matrix is a direct indication of whether or not the roll axis of the
plane is parallel to the ground, and can be used directly in a feedback loop to
control pitch. When the plane is level, zxr will be equal to zero.

2. To control the roll of an aircraft, you need to know the bank attitude of
the aircraft, which you can find by taking the dot product of the pitch
axis of the aircraft with the ground vertical.

The dot product of the pitch axis (Y) of the aircraft with the ground vertical
(Z) is one of the direction cosines, zyr . It is equal to the sine of the angle
between the pitch axis and the horizontal plane in the earth frame of
reference. So that element of the matrix is a direct indication of whether or not
the pitch axis of the plane is parallel to the ground, and can be used directly in
a feedback loop to control pitch. When the plane is level, zyr will be equal to
zero.

3. To navigate, you need to know the yaw attitude of the aircraft with
respect to the direction that you want to go, which you can find by

DCM 30 Draft: 5/17/2009

taking the cross product of the roll axis of the aircraft with a vector in
the direction that you want to go. This works even if you are upside
down. To find out if your aircraft might be pointing in the opposite
direction than you want to go, take the dot product of the roll axis with
the desired direction vector. If it is negative, the aircraft is more than 90
degrees off course.

The roll axis vector of the aircraft is the first column of the R matrix. We only
want the horizontal components, so we set the Z component to zero. The
resulting vector is equal to []0yxxx rr . We take the cross product of that
vector with the desired direction vector to get the sine of the deviation angle,
and we take the dot product to get the cosine.

4. To find out if the aircraft is upside down, examine the sign of the dot
product of the aircraft yaw axis with the vertical. If it is less than zero,
the aircraft is upside down.

The dot product of the aircraft yaw axis with the vertical is the matrix
element zzr . When the plane is flying more or less level, this element is
approximately one. When the plane is upside down, this element is
approximately minus one. When the plane is banked sideways at a 90 degree
angle, this element is zero.

5. To find out the turning rate of the aircraft around the vertical earth axis,
transform the gyro rotation vector to the earth frame of reference, and
take the dot product with the vertical axis.

This is equivalent to taking the dot product of the third row of the R matrix
with the gyro rotation vector. So, the turning rate of the aircraft around the
vertical earth axis is equal to zzzzyyzxx rrr ωωω ++ .

Implementation
We are planning to write a separate paper on how to implement the DCM

algorithm in C code. Some readers may have access to firmware that we
have written. If so, to avoid confusion, you should be aware of the following:

This paper expresses all quantities using an aviation convention for the 3
axes. X is forward, Y points along the right wing, and Z is down. However, the
firmware that we have written uses a coordinate system that is somewhat
different. X points along the left wing, Y is forward, and Z is down. The reason
that we did this is because in the design of the board, the three axis
accelerometer was mounted in such a way that when you mount the board in
a plane with the longer dimension aligned in the most convenient orientation,
the accelerometer, and the labels on the board, point the Y axis forward.

References
Several papers written by Robert Mahony et al are available at

http://gentlenav.googlecode.com/files/MahonyPapers.zip.

